Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Pulmonology ; 2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33879426

RESUMO

The design of e-cigarettes (e-cigs) is constantly evolving and the latest models can aerosolize using high-power sub-ohm resistance and hence may produce specific particle concentrations. The aim of this study was to evaluate the aerosol characteristics generated by two different types of electronic cigarette in real-world conditions, such as a sitting room or a small office, in number of particles (particles/cm3). We compared the real time and time-integrated measurements of the aerosol generated by the e-cigarette types Just Fog and JUUL. Real time (10s average) number of particles (particles/cm3) in 8 different aerodynamic sizes was measured using an optical particle counter (OPC) model Profiler 212-2. Tests were conducted with and without a Heating, Ventilating Air Conditioning System (HVACS) in operation, in order to evaluate the efficiency of air filtration. During the vaping sessions the OPC recorded quite significant increases in number of particles/cm3. The JUUL e-cig produced significantly lower emissions than Just Fog with and without the HVACS in operation. The study demonstrates the rapid volatility or change from liquid or semi-liquid to gaseous status of the e-cig aerosols, with half-life in the order of a few seconds (min. 4.6, max 23.9), even without the HVACS in operation. The e-cig aerosol generated by the JUUL proved significantly lower than that generated by the Just Fog, but this reduction may not be sufficient to eliminate or consistently reduce the health risk for vulnerable non e-cig users exposed to it.

3.
Biomarkers ; 11(3): 221-32, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16760131

RESUMO

Air pollution and cigarette smoke are recognized health risks. A method was developed for the measurement of the deposition fraction (DF) of polydisperse particulate matter (PM) in human airways. Ten normal volunteers [three females, age range 18-67 years, mean age (SD) 43.9 (14)] made single breath exhalations after inhalation to total lung capacity. The exhaled breath was diverted to a multichannel laser diffraction chamber where the particulate profiler measured 0.3 - 1.0-microm particles. DF was inversely related to expiration flow-rate, 0.69 (0.02) at 4 l min-1 and 0.5 (0.01) at 13 l min-1, respectively (p<0.05), and was influenced by the inhalation flow-rate [0.70 (0.02) at 3 l min-1 and 0.59 (0.02) at 13 l min-1, respectively (p<0.05)], while no differences were found between nasal and oral inhalation (0.68 (0.05) versus 0.67 (0.06), p>0.05). Higher breath holding times were associated with elevated DF [0.74 (0.02) at 20 s, and 0.62 (0.05) without breath holding (p<0.01)]. When the expiratory flow was controlled and the breath hold time standardized, DF was reproducible (CV = 4.85%). PM can be measured in the exhaled breath and its DF can be quantified using a portable device. These methods may be useful in studies investigating the health effects of air pollution and tobacco smoke.


Assuntos
Pulmão/metabolismo , Fumar/efeitos adversos , Poluição por Fumaça de Tabaco/análise , Adolescente , Adsorção , Adulto , Idoso , Poluentes Atmosféricos/farmacocinética , Expiração , Feminino , Humanos , Inalação , Métodos , Pessoa de Meia-Idade , Projetos de Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...