Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3302, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658535

RESUMO

Uncontrolled secretion of ECM proteins, such as collagen, can lead to excessive scarring and fibrosis and compromise tissue function. Despite the widespread occurrence of fibrotic diseases and scarring, effective therapies are lacking. A promising approach would be to limit the amount of collagen released from hyperactive fibroblasts. We have designed membrane permeant peptide inhibitors that specifically target the primary interface between TANGO1 and cTAGE5, an interaction that is required for collagen export from endoplasmic reticulum exit sites (ERES). Application of the peptide inhibitors leads to reduced TANGO1 and cTAGE5 protein levels and a corresponding inhibition in the secretion of several ECM components, including collagens. Peptide inhibitor treatment in zebrafish results in altered tissue architecture and reduced granulation tissue formation during cutaneous wound healing. The inhibitors reduce secretion of several ECM proteins, including collagens, fibrillin and fibronectin in human dermal fibroblasts and in cells obtained from patients with a generalized fibrotic disease (scleroderma). Taken together, targeted interference of the TANGO1-cTAGE5 binding interface could enable therapeutic modulation of ERES function in ECM hypersecretion, during wound healing and fibrotic processes.


Assuntos
Cicatriz , Colágeno , Fibroblastos , Cicatrização , Peixe-Zebra , Humanos , Animais , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Colágeno/metabolismo , Cicatrização/efeitos dos fármacos , Cicatriz/metabolismo , Cicatriz/patologia , Cicatriz/tratamento farmacológico , Pele/metabolismo , Pele/patologia , Pele/efeitos dos fármacos , Fibrose , Peptídeos/farmacologia , Peptídeos/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/tratamento farmacológico , Escleroderma Sistêmico/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos
2.
Nat Commun ; 15(1): 3363, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637494

RESUMO

Colorectal cancer (CRC) tumors are composed of heterogeneous and plastic cell populations, including a pool of cancer stem cells that express LGR5. Whether these distinct cell populations display different mechanical properties, and how these properties might contribute to metastasis is poorly understood. Using CRC patient derived organoids (PDOs), we find that compared to LGR5- cells, LGR5+ cancer stem cells are stiffer, adhere better to the extracellular matrix (ECM), move slower both as single cells and clusters, display higher nuclear YAP, show a higher survival rate in response to mechanical confinement, and form larger transendothelial gaps. These differences are largely explained by the downregulation of the membrane to cortex attachment proteins Ezrin/Radixin/Moesin (ERMs) in the LGR5+ cells. By analyzing single cell RNA-sequencing (scRNA-seq) expression patterns from a patient cohort, we show that this downregulation is a robust signature of colorectal tumors. Our results show that LGR5- cells display a mechanically dynamic phenotype suitable for dissemination from the primary tumor whereas LGR5+ cells display a mechanically stable and resilient phenotype suitable for extravasation and metastatic growth.


Assuntos
Neoplasias Colorretais , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Colorretais/patologia , Células-Tronco Neoplásicas/metabolismo , Fenótipo
3.
Commun Biol ; 5(1): 1330, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463346

RESUMO

Bioluminescence microscopy is an appealing alternative to fluorescence microscopy, because it does not depend on external illumination, and consequently does neither produce spurious background autofluorescence, nor perturb intrinsically photosensitive processes in living cells and animals. The low photon emission of known luciferases, however, demands long exposure times that are prohibitive for imaging fast biological dynamics. To increase the versatility of bioluminescence microscopy, we present an improved low-light microscope in combination with deep learning methods to image extremely photon-starved samples enabling subsecond exposures for timelapse and volumetric imaging. We apply our method to image subcellular dynamics in mouse embryonic stem cells, epithelial morphology during zebrafish development, and DAF-16 FoxO transcription factor shuttling from the cytoplasm to the nucleus under external stress. Finally, we concatenate neural networks for denoising and light-field deconvolution to resolve intracellular calcium dynamics in three dimensions of freely moving Caenorhabditis elegans.


Assuntos
Aprendizado Profundo , Animais , Camundongos , Peixe-Zebra , Citoplasma , Núcleo Celular , Microscopia de Fluorescência , Caenorhabditis elegans
4.
Nat Commun ; 13(1): 7147, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414642

RESUMO

Regulation of microtubule (MT) dynamics is key for mitotic spindle assembly and faithful chromosome segregation. Here we show that polyglutamylation, a still understudied post-translational modification of spindle MTs, is essential to define their dynamics within the range required for error-free chromosome segregation. We identify TTLL11 as an enzyme driving MT polyglutamylation in mitosis and show that reducing TTLL11 levels in human cells or zebrafish embryos compromises chromosome segregation fidelity and impairs early embryonic development. Our data reveal a mechanism to ensure genome stability in normal cells that is compromised in cancer cells that systematically downregulate TTLL11. Our data suggest a direct link between MT dynamics regulation, MT polyglutamylation and two salient features of tumour cells, aneuploidy and chromosome instability (CIN).


Assuntos
Segregação de Cromossomos , Neoplasias , Animais , Humanos , Cinetocoros , Fuso Acromático/genética , Peixe-Zebra/genética , Microtúbulos/genética , Neoplasias/genética
5.
Proc Natl Acad Sci U S A ; 119(29): e2117090119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858306

RESUMO

Retinal photoreceptors have a distinct transcriptomic profile compared to other neuronal subtypes, likely reflecting their unique cellular morphology and function in the detection of light stimuli by way of the ciliary outer segment. We discovered a layer of this molecular specialization by revealing that the vertebrate retina expresses the largest number of tissue-enriched microexons of all tissue types. A subset of these microexons is included exclusively in photoreceptor transcripts, particularly in genes involved in cilia biogenesis and vesicle-mediated transport. This microexon program is regulated by Srrm3, a paralog of the neural microexon regulator Srrm4. Despite the fact that both proteins positively regulate retina microexons in vitro, only Srrm3 is highly expressed in mature photoreceptors. Its deletion in zebrafish results in widespread down-regulation of microexon inclusion from early developmental stages, followed by other transcriptomic alterations, severe photoreceptor defects, and blindness. These results shed light on the transcriptomic specialization and functionality of photoreceptors, uncovering unique cell type-specific roles for Srrm3 and microexons with implications for retinal diseases.


Assuntos
Proteínas , Segmento Externo das Células Fotorreceptoras da Retina , Fatores de Processamento de Serina-Arginina , Visão Ocular , Animais , Éxons , Deleção de Genes , Humanos , Proteínas/genética , Proteínas/fisiologia , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/fisiologia , Transcriptoma , Visão Ocular/genética , Visão Ocular/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética
6.
J Vis Exp ; (174)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34542528

RESUMO

During the development of a multicellular organism, a single fertilized cell divides and gives rise to multiple tissues with diverse functions. Tissue morphogenesis goes in hand with molecular and structural changes at the single cell level that result in variations of subcellular mechanical properties. As a consequence, even within the same cell, different organelles and compartments resist differently to mechanical stresses; and mechanotransduction pathways can actively regulate their mechanical properties. The ability of a cell to adapt to the microenvironment of the tissue niche thus is in part due to the ability to sense and respond to mechanical stresses. We recently proposed a new mechanosensation paradigm in which nuclear deformation and positioning enables a cell to gauge the physical 3D environment and endows the cell with a sense of proprioception to decode changes in cell shape. In this article, we describe a new method to measure the forces and material properties that shape the cell nucleus inside living cells, exemplified on adherent cells and mechanically confined cells. The measurements can be performed non-invasively with optical traps inside cells, and the forces are directly accessible through calibration-free detection of light momentum. This allows measuring the mechanics of the nucleus independently from cell surface deformations and allowing dissection of exteroceptive and interoceptive mechanotransduction pathways. Importantly, the trapping experiment can be combined with optical microscopy to investigate the cellular response and subcellular dynamics using fluorescence imaging of the cytoskeleton, calcium ions, or nuclear morphology. The presented method is straightforward to apply, compatible with commercial solutions for force measurements, and can easily be extended to investigate the mechanics of other subcellular compartments, e.g., mitochondria, stress-fibers, and endosomes.


Assuntos
Mecanotransdução Celular , Pinças Ópticas , Citoesqueleto , Fenômenos Mecânicos , Microscopia
7.
Nature ; 590(7847): 618-623, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33568811

RESUMO

Errors in early embryogenesis are a cause of sporadic cell death and developmental failure1,2. Phagocytic activity has a central role in scavenging apoptotic cells in differentiated tissues3-6. However, how apoptotic cells are cleared in the blastula embryo in the absence of specialized immune cells remains unknown. Here we show that the surface epithelium of zebrafish and mouse embryos, which is the first tissue formed during vertebrate development, performs efficient phagocytic clearance of apoptotic cells through phosphatidylserine-mediated target recognition. Quantitative four-dimensional in vivo imaging analyses reveal a collective epithelial clearance mechanism that is based on mechanical cooperation by two types of Rac1-dependent basal epithelial protrusions. The first type of protrusion, phagocytic cups, mediates apoptotic target uptake. The second, a previously undescribed type of fast and extended actin-based protrusion that we call 'epithelial arms', promotes the rapid dispersal of apoptotic targets through Arp2/3-dependent mechanical pushing. On the basis of experimental data and modelling, we show that mechanical load-sharing enables the long-range cooperative uptake of apoptotic cells by multiple epithelial cells. This optimizes the efficiency of tissue clearance by extending the limited spatial exploration range and local uptake capacity of non-motile epithelial cells. Our findings show that epithelial tissue clearance facilitates error correction that is relevant to the developmental robustness and survival of the embryo, revealing the presence of an innate immune function in the earliest stages of embryonic development.


Assuntos
Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário , Células Epiteliais/citologia , Fagócitos/citologia , Fagocitose , Peixe-Zebra/embriologia , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Animais , Apoptose , Movimento Celular , Forma Celular , Extensões da Superfície Celular , Imunidade Inata , Camundongos , Fosfatidilserinas/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
8.
Science ; 370(6514)2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33060331

RESUMO

The physical microenvironment regulates cell behavior during tissue development and homeostasis. How single cells decode information about their geometrical shape under mechanical stress and physical space constraints within tissues remains largely unknown. Here, using a zebrafish model, we show that the nucleus, the biggest cellular organelle, functions as an elastic deformation gauge that enables cells to measure cell shape deformations. Inner nuclear membrane unfolding upon nucleus stretching provides physical information on cellular shape changes and adaptively activates a calcium-dependent mechanotransduction pathway, controlling actomyosin contractility and migration plasticity. Our data support that the nucleus establishes a functional module for cellular proprioception that enables cells to sense shape variations for adapting cellular behavior to their microenvironment.


Assuntos
Forma Celular , Mecanotransdução Celular , Membrana Nuclear/fisiologia , Fosfolipases A2 Citosólicas/metabolismo , Actomiosina/metabolismo , Animais , Movimento Celular , Lipase/metabolismo , Miosina Tipo II/metabolismo , Peixe-Zebra
9.
Sci Adv ; 6(11): eaaz1588, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32201729

RESUMO

Through the asymmetric distribution of messenger RNAs (mRNAs), cells spatially regulate gene expression to create cytoplasmic domains with specialized functions. In neurons, mRNA localization is required for essential processes such as cell polarization, migration, and synaptic plasticity underlying long-term memory formation. The essential components driving cytoplasmic mRNA transport in neurons and mammalian cells are not known. We report the first reconstitution of a mammalian mRNA transport system revealing that the tumor suppressor adenomatous polyposis coli (APC) forms stable complexes with the axonally localized ß-actin and ß2B-tubulin mRNAs, which are linked to a kinesin-2 via the cargo adaptor KAP3. APC activates kinesin-2, and both proteins are sufficient to drive specific transport of defined mRNA packages. Guanine-rich sequences located in 3'UTRs of axonal mRNAs increase transport efficiency and balance the access of different mRNAs to the transport system. Our findings reveal a minimal set of proteins sufficient to transport mammalian mRNAs.


Assuntos
Polipose Adenomatosa do Colo/metabolismo , Axônios/metabolismo , Cinesinas/metabolismo , RNA Mensageiro/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas do Citoesqueleto/metabolismo , Humanos , Modelos Biológicos , Complexos Multiproteicos , Ligação Proteica , Tubulina (Proteína)/genética
10.
Opt Express ; 27(17): 24578-24590, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31510345

RESUMO

We present a structured illumination microscopy based point localization estimator (SIMPLE) that achieves a 2-fold increase in single molecule localization precision compared to conventional centroid estimation methods. SIMPLE advances the recently introduced MINFLUX concept by using precisely phase-shifted sinusoidal wave patterns as nanometric rulers for simultaneous particle localization based on photon count variation over a 20 µm field of view. We validate SIMPLE in silico and experimentally on a TIRF-SIM setup using a digital micro-mirror device (DMD) as a spatial light modulator.

11.
Nat Cell Biol ; 19(4): 306-317, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28346437

RESUMO

During embryonic development, mechanical forces are essential for cellular rearrangements driving tissue morphogenesis. Here, we show that in the early zebrafish embryo, friction forces are generated at the interface between anterior axial mesoderm (prechordal plate, ppl) progenitors migrating towards the animal pole and neurectoderm progenitors moving in the opposite direction towards the vegetal pole of the embryo. These friction forces lead to global rearrangement of cells within the neurectoderm and determine the position of the neural anlage. Using a combination of experiments and simulations, we show that this process depends on hydrodynamic coupling between neurectoderm and ppl as a result of E-cadherin-mediated adhesion between those tissues. Our data thus establish the emergence of friction forces at the interface between moving tissues as a critical force-generating process shaping the embryo.


Assuntos
Fricção , Sistema Nervoso/embriologia , Peixe-Zebra/embriologia , Animais , Fenômenos Biomecânicos , Caderinas/metabolismo , Comunicação Celular , Movimento Celular , Embrião não Mamífero/citologia , Endoderma/citologia , Endoderma/embriologia , Gastrulação , Hidrodinâmica , Mesoderma/citologia , Mesoderma/embriologia , Modelos Biológicos , Morfogênese , Mutação/genética , Placa Neural/citologia , Placa Neural/embriologia , Proteínas de Peixe-Zebra/metabolismo
12.
J Cell Sci ; 130(1): 51-61, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27856508

RESUMO

Biomimetic materials have long been the (he)art of bioengineering. They usually aim at mimicking in vivo conditions to allow in vitro culture, differentiation and expansion of cells. The past decade has witnessed a considerable amount of progress in soft lithography, bio-inspired micro-fabrication and biochemistry, allowing the design of sophisticated and physiologically relevant micro- and nano-environments. These systems now provide an exquisite toolbox with which we can control a large set of physicochemical environmental parameters that determine cell behavior. Bio-functionalized surfaces have evolved from simple protein-coated solid surfaces or cellular extracts into nano-textured 3D surfaces with controlled rheological and topographical properties. The mechanobiological molecular processes by which cells interact and sense their environment can now be unambiguously understood down to the single-molecule level. This Commentary highlights recent successful examples where bio-functionalized substrates have contributed in raising and answering new questions in the area of extracellular matrix sensing by cells, cell-cell adhesion and cell migration. The use, the availability, the impact and the challenges of such approaches in the field of biology are discussed.


Assuntos
Materiais Biomiméticos/farmacologia , Sinais (Psicologia) , Meio Ambiente , Animais , Comunicação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Humanos
13.
Cell Rep ; 16(3): 866-77, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27396324

RESUMO

During metazoan development, the temporal pattern of morphogen signaling is critical for organizing cell fates in space and time. Yet, tools for temporally controlling morphogen signaling within the embryo are still scarce. Here, we developed a photoactivatable Nodal receptor to determine how the temporal pattern of Nodal signaling affects cell fate specification during zebrafish gastrulation. By using this receptor to manipulate the duration of Nodal signaling in vivo by light, we show that extended Nodal signaling within the organizer promotes prechordal plate specification and suppresses endoderm differentiation. Endoderm differentiation is suppressed by extended Nodal signaling inducing expression of the transcriptional repressor goosecoid (gsc) in prechordal plate progenitors, which in turn restrains Nodal signaling from upregulating the endoderm differentiation gene sox17 within these cells. Thus, optogenetic manipulation of Nodal signaling identifies a critical role of Nodal signaling duration for organizer cell fate specification during gastrulation.


Assuntos
Padronização Corporal/fisiologia , Gastrulação/fisiologia , Proteína Nodal/metabolismo , Fatores de Transcrição SOXF/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Sequência de Bases , Padronização Corporal/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Embrião não Mamífero/fisiologia , Endoderma/metabolismo , Endoderma/fisiologia , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Morfogênese/genética , Morfogênese/fisiologia , Optogenética/métodos , Transdução de Sinais/genética , Transcrição Gênica/genética , Regulação para Cima/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética
14.
Cell ; 161(2): 374-86, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25799384

RESUMO

Cell movement has essential functions in development, immunity, and cancer. Various cell migration patterns have been reported, but no general rule has emerged so far. Here, we show on the basis of experimental data in vitro and in vivo that cell persistence, which quantifies the straightness of trajectories, is robustly coupled to cell migration speed. We suggest that this universal coupling constitutes a generic law of cell migration, which originates in the advection of polarity cues by an actin cytoskeleton undergoing flows at the cellular scale. Our analysis relies on a theoretical model that we validate by measuring the persistence of cells upon modulation of actin flow speeds and upon optogenetic manipulation of the binding of an actin regulator to actin filaments. Beyond the quantitative prediction of the coupling, the model yields a generic phase diagram of cellular trajectories, which recapitulates the full range of observed migration patterns.


Assuntos
Actinas/metabolismo , Movimento Celular , Modelos Biológicos , Animais , Linhagem Celular , Polaridade Celular , Células Cultivadas , Citoesqueleto/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Oryzias
15.
Cell ; 160(4): 673-685, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25679761

RESUMO

3D amoeboid cell migration is central to many developmental and disease-related processes such as cancer metastasis. Here, we identify a unique prototypic amoeboid cell migration mode in early zebrafish embryos, termed stable-bleb migration. Stable-bleb cells display an invariant polarized balloon-like shape with exceptional migration speed and persistence. Progenitor cells can be reversibly transformed into stable-bleb cells irrespective of their primary fate and motile characteristics by increasing myosin II activity through biochemical or mechanical stimuli. Using a combination of theory and experiments, we show that, in stable-bleb cells, cortical contractility fluctuations trigger a stochastic switch into amoeboid motility, and a positive feedback between cortical flows and gradients in contractility maintains stable-bleb cell polarization. We further show that rearward cortical flows drive stable-bleb cell migration in various adhesive and non-adhesive environments, unraveling a highly versatile amoeboid migration phenotype.


Assuntos
Movimento Celular , Embrião não Mamífero/citologia , Gástrula/citologia , Células-Tronco/citologia , Peixe-Zebra/embriologia , Animais , Adesão Celular , Polaridade Celular
16.
Methods Mol Biol ; 1189: 219-35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25245697

RESUMO

Mechanically coupled cells can generate forces driving cell and tissue morphogenesis during development. Visualization and measuring of these forces is of major importance to better understand the complexity of the biomechanic processes that shape cells and tissues. Here, we describe how UV laser ablation can be utilized to quantitatively assess mechanical tension in different tissues of the developing zebrafish and in cultures of primary germ layer progenitor cells ex vivo.


Assuntos
Embrião não Mamífero/citologia , Embrião não Mamífero/fisiologia , Terapia a Laser/métodos , Raios Ultravioleta , Peixe-Zebra/embriologia , Actomiosina/metabolismo , Animais , Fenômenos Biomecânicos , Células Cultivadas , Mesoderma/citologia , Células-Tronco/citologia
17.
Curr Protein Pept Sci ; 12(8): 714-24, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22044145

RESUMO

Diffusing membrane constituents are constantly exposed to a variety of forces that influence their stochastic path. Single molecule experiments allow for resolving trajectories at extremely high spatial and temporal accuracy, thereby offering insights into en route interactions of the tracer. In this review we discuss approaches to derive information about the underlying processes, based on single molecule tracking experiments. In particular, we focus on a new versatile way to analyze single molecule diffusion in the absence of a full analytical treatment. The method is based on comprehensive comparison of an experimental data set against the hypothetical outcome of multiple experiments performed on the computer. Since Monte Carlo simulations can be easily and rapidly performed even on state-of-the-art PCs, our method provides a simple way for testing various - even complicated - diffusion models. We describe the new method in detail, and show the applicability on two specific examples: firstly, kinetic rate constants can be derived for the transient interaction of mobile membrane proteins; secondly, residence time and corral size can be extracted for confined diffusion.


Assuntos
Difusão , Proteínas de Membrana/análise , Algoritmos , Membrana Celular/química , Membrana Celular/metabolismo , Cinética , Proteínas de Membrana/metabolismo , Método de Monte Carlo
18.
Biochim Biophys Acta ; 1808(10): 2581-90, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21718688

RESUMO

Cationic antimicrobial peptides (CAMPs) selectively target bacterial membranes by electrostatic interactions with negatively charged lipids. It turned out that for inhibition of microbial growth a high CAMP membrane concentration is required, which can be realized by the incorporation of hydrophobic groups within the peptide. Increasing hydrophobicity, however, reduces the CAMP selectivity for bacterial over eukaryotic host membranes, thereby causing the risk of detrimental side-effects. In this study we addressed how cationic amphipathic peptides-in particular a CAMP with Lysine-Leucine-Lysine repeats (termed KLK)-affect the localization and dynamics of molecules in eukaryotic membranes. We found KLK to selectively inhibit the endocytosis of a subgroup of membrane proteins and lipids by electrostatically interacting with negatively charged sialic acid moieties. Ultrastructural characterization revealed the formation of membrane invaginations representing fission or fusion intermediates, in which the sialylated proteins and lipids were immobilized. Experiments on structurally different cationic amphipathic peptides (KLK, 6-MO-LF11-322 and NK14-2) indicated a cooperation of electrostatic and hydrophobic forces that selectively arrest sialylated membrane constituents.


Assuntos
Lipídeos de Membrana/química , Proteínas de Membrana/química , Ácido N-Acetilneuramínico/química , Peptídeos/química , Sequência de Aminoácidos , Animais , Cátions , Células Cultivadas , Humanos , Microscopia Eletrônica , Microscopia de Fluorescência
19.
Biophys J ; 100(11): 2839-45, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21641330

RESUMO

Resolving the dynamical interplay of proteins and lipids in the live-cell plasma membrane represents a central goal in current cell biology. Superresolution concepts have introduced a means of capturing spatial heterogeneity at a nanoscopic length scale. Similar concepts for detecting dynamical transitions (superresolution chronoscopy) are still lacking. Here, we show that recently introduced spot-variation fluorescence correlation spectroscopy allows for sensing transient confinement times of membrane constituents at dramatically improved resolution. Using standard diffraction-limited optics, spot-variation fluorescence correlation spectroscopy captures signatures of single retardation events far below the transit time of the tracer through the focal spot. We provide an analytical description of special cases of transient binding of a tracer to pointlike traps, or association of a tracer with nanodomains. The influence of trap mobility and the underlying binding kinetics are quantified. Experimental approaches are suggested that allow for gaining quantitative mechanistic insights into the interaction processes of membrane constituents.


Assuntos
Membrana Celular/metabolismo , Espectrometria de Fluorescência/métodos , Difusão , Cinética , Método de Monte Carlo , Processos Estocásticos , Fatores de Tempo
20.
J Biol Chem ; 285(53): 41765-71, 2010 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-20966075

RESUMO

The plasma membrane has been hypothesized to contain nanoscopic lipid platforms, which are discussed in the context of "lipid rafts" or "membrane rafts." Based on biochemical and cell biological studies, rafts are believed to play a crucial role in many signaling processes. However, there is currently not much information on their size, shape, stability, surface density, composition, and heterogeneity. We present here a method that allows for the first time the direct imaging of nanoscopic long-lived platforms with raft-like properties diffusing in the live cell plasma membrane. Our method senses these platforms by their property to assemble a characteristic set of fluorescent marker proteins or lipids on a time scale of seconds. A special photobleaching protocol was used to reduce the surface density of labeled mobile platforms down to the level of well isolated diffraction-limited spots without altering the single spot brightness. The statistical distribution of probe molecules per platform was determined by single molecule brightness analysis. For demonstration, we used the consensus raft marker glycosylphosphatidylinositol-anchored monomeric GFP and the fluorescent lipid analog BODIPY-G(M1), which preferentially partitions into liquid-ordered phases. For both markers, we found cholesterol-dependent homo-association in the plasma membrane of living CHO and Jurkat T cells in the resting state, thereby demonstrating the existence of small, mobile, long-lived platforms containing these probes. We further applied the technology to address structural changes in the plasma membrane during fever-type heat shock: at elevated temperatures, the glycosylphosphatidylinositol-anchored monomeric GFP homo-association disappeared, accompanied by an increase in the expression of the small heat shock protein Hsp27.


Assuntos
Membrana Celular/metabolismo , Glicosilfosfatidilinositóis/química , Microscopia/métodos , Nanoestruturas/química , Nanotecnologia/métodos , Animais , Colesterol/química , Cricetinae , Cricetulus , Difusão , Proteínas de Fluorescência Verde/química , Humanos , Células Jurkat , Microdomínios da Membrana/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...