Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961289

RESUMO

Brain computation performed by billions of nerve cells relies on a sufficient and uninterrupted nutrient and oxygen supply1,2. Astrocytes, the ubiquitous glial neighbours of neurons, govern brain glucose uptake and metabolism3,4, but the exact mechanisms of metabolic coupling between neurons and astrocytes that ensure on-demand support of neuronal energy needs are not fully understood5,6. Here we show, using experimental in vitro and in vivo animal models, that neuronal activity-dependent metabolic activation of astrocytes is mediated by neuromodulator adenosine acting on astrocytic A2B receptors. Stimulation of A2B receptors recruits the canonical cyclic adenosine 3',5'-monophosphate-protein kinase A signalling pathway, leading to rapid activation of astrocyte glucose metabolism and the release of lactate, which supplements the extracellular pool of readily available energy substrates. Experimental mouse models involving conditional deletion of the gene encoding A2B receptors in astrocytes showed that adenosine-mediated metabolic signalling is essential for maintaining synaptic function, especially under conditions of high energy demand or reduced energy supply. Knockdown of A2B receptor expression in astrocytes led to a major reprogramming of brain energy metabolism, prevented synaptic plasticity in the hippocampus, severely impaired recognition memory and disrupted sleep. These data identify the adenosine A2B receptor as an astrocytic sensor of neuronal activity and show that cAMP signalling in astrocytes tunes brain energy metabolism to support its fundamental functions such as sleep and memory.

2.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230235, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853561

RESUMO

Which proportion of the long-term potentiation (LTP) expressed in the bulk of excitatory synapses is postsynaptic and which presynaptic remains debatable. To understand better the possible impact of either LTP form, we explored a realistic model of a CA1 pyramidal cell equipped with known membrane mechanisms and multiple, stochastic excitatory axo-spinous synapses. Our simulations were designed to establish an input-output transfer function, the dependence between the frequency of presynaptic action potentials triggering probabilistic synaptic discharges and the average frequency of postsynaptic spiking. We found that, within the typical physiological range, potentiation of the postsynaptic current results in a greater overall output than an equivalent increase in presynaptic release probability. This difference grows stronger at lower input frequencies and lower release probabilities. Simulations with a non-hierarchical circular network of principal neurons indicated that equal increases in either synaptic fidelity or synaptic strength of individual connections also produce distinct changes in network activity, although the network phenomenology is likely to be complex. These observations should help to interpret the machinery of LTP phenomena documented in situ. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Potenciação de Longa Duração , Modelos Neurológicos , Sinapses , Potenciação de Longa Duração/fisiologia , Sinapses/fisiologia , Células Piramidais/fisiologia , Animais , Simulação por Computador , Potenciais de Ação/fisiologia , Região CA1 Hipocampal/fisiologia
3.
Nat Rev Neurosci ; 25(1): 1-2, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37950075
4.
iScience ; 26(7): 107236, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37496680

RESUMO

Neutrophils are white blood cells that are critical to acute inflammatory and adaptive immune responses. Their swarming-pattern behavior is controlled by multiple cellular cascades involving calcium-dependent release of various signaling molecules. Previous studies have reported that neutrophils express glutamate receptors and can release glutamate but evidence of direct neutrophil-neutrophil communication has been elusive. Here, we hold semi-suspended cultured human neutrophils in patch-clamp whole-cell mode to find that calcium mobilization induced by stimulating one neutrophil can trigger an N-methyl-D-aspartate (NMDA) receptor-driven membrane current and calcium signal in neighboring neutrophils. We employ an enzymatic-based imaging assay to image, in real time, glutamate release from neutrophils induced by glutamate released from their neighbors. These observations provide direct evidence for a positive-feedback inter-neutrophil communication that could contribute to mechanisms regulating communal neutrophil behavior.

5.
Cells ; 12(12)2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37371080

RESUMO

Once outside the synaptic cleft, the excitatory neurotransmitter glutamate is rapidly bound by its high-affinity transporters, which are expressed in abundance on the surface of perisynaptic astroglia. While this binding and the subsequent uptake of glutamate constrain excitatory transmission mainly within individual synapses, there is growing evidence for the physiologically important extrasynaptic actions of glutamate. However, the mechanistic explanation and the scope of such actions remain obscure. Furthermore, a significant proportion of glutamate molecules initially bound by transporters could be released back into the extracellular space before being translocated into astrocytes. To understand the implications of such effects, we simulated the release, diffusion, and transporter and receptor interactions of glutamate molecules in the synaptic environment. The latter was represented via trial-by-trial stochastic generation of astroglial and neuronal elements in the brain neuropil (overlapping spheroids of varied sizes), rather than using the 'average' morphology, thus reflecting the probabilistic nature of neuropil architectonics. Our simulations predict significant activation of high-affinity receptors, such as receptors of the NMDA type, at distances beyond half-micron from the glutamate release site, with glutamate-transporter unbinding playing an important role. These theoretical predictions are consistent with recent glutamate imaging data, thus lending support to the concept of significant volume-transmitted actions of glutamate in the brain.


Assuntos
Sistema X-AG de Transporte de Aminoácidos , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Neurônios/metabolismo , Ácido Glutâmico/metabolismo , Sinapses/metabolismo
6.
Curr Biol ; 33(7): 1249-1264.e7, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36921605

RESUMO

Mechanisms that entrain and pace rhythmic epileptiform discharges remain debated. Traditionally, the quest to understand them has focused on interneuronal networks driven by synaptic GABAergic connections. However, synchronized interneuronal discharges could also trigger the transient elevations of extracellular GABA across the tissue volume, thus raising tonic conductance (Gtonic) of synaptic and extrasynaptic GABA receptors in multiple cells. Here, we monitor extracellular GABA in hippocampal slices using patch-clamp GABA "sniffer" and a novel optical GABA sensor, showing that periodic epileptiform discharges are preceded by transient, region-wide waves of extracellular GABA. Neural network simulations that incorporate volume-transmitted GABA signals point to a cycle of GABA-driven network inhibition and disinhibition underpinning this relationship. We test and validate this hypothesis using simultaneous patch-clamp recordings from multiple neurons and selective optogenetic stimulation of fast-spiking interneurons. Critically, reducing GABA uptake in order to decelerate extracellular GABA fluctuations-without affecting synaptic GABAergic transmission or resting GABA levels-slows down rhythmic activity. Our findings thus unveil a key role of extrasynaptic, volume-transmitted GABA in pacing regenerative rhythmic activity in brain networks.


Assuntos
Hipocampo , Transmissão Sináptica , Transmissão Sináptica/fisiologia , Neurônios , Interneurônios/fisiologia , Ácido gama-Aminobutírico
7.
Trends Neurosci ; 46(2): 94-96, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36280457

RESUMO

The correlation coefficient gauges linear association between two variables. However, interpreting its value depends on the question at hand. This article argues that relying on the correlation coefficient may be irrelevant for many neuroscience research tasks. When the experimental dataset is contextually suitable for binning-averaging, other indicators of statistical association could prove more suitable.

8.
NPJ Parkinsons Dis ; 8(1): 162, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36424392

RESUMO

Mutations in the SNCA gene cause autosomal dominant Parkinson's disease (PD), with loss of dopaminergic neurons in the substantia nigra, and aggregation of α-synuclein. The sequence of molecular events that proceed from an SNCA mutation during development, to end-stage pathology is unknown. Utilising human-induced pluripotent stem cells (hiPSCs), we resolved the temporal sequence of SNCA-induced pathophysiological events in order to discover early, and likely causative, events. Our small molecule-based protocol generates highly enriched midbrain dopaminergic (mDA) neurons: molecular identity was confirmed using single-cell RNA sequencing and proteomics, and functional identity was established through dopamine synthesis, and measures of electrophysiological activity. At the earliest stage of differentiation, prior to maturation to mDA neurons, we demonstrate the formation of small ß-sheet-rich oligomeric aggregates, in SNCA-mutant cultures. Aggregation persists and progresses, ultimately resulting in the accumulation of phosphorylated α-synuclein aggregates. Impaired intracellular calcium signalling, increased basal calcium, and impairments in mitochondrial calcium handling occurred early at day 34-41 post differentiation. Once midbrain identity fully developed, at day 48-62 post differentiation, SNCA-mutant neurons exhibited mitochondrial dysfunction, oxidative stress, lysosomal swelling and increased autophagy. Ultimately these multiple cellular stresses lead to abnormal excitability, altered neuronal activity, and cell death. Our differentiation paradigm generates an efficient model for studying disease mechanisms in PD and highlights that protein misfolding to generate intraneuronal oligomers is one of the earliest critical events driving disease in human neurons, rather than a late-stage hallmark of the disease.

10.
Biomedicines ; 10(10)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289667

RESUMO

Excitatory synapses in the brain are often surrounded by nanoscopic astroglial processes that express high-affinity glutamate transporters at a high surface density. This ensures that the bulk of glutamate leaving the synaptic cleft is taken up for its subsequent metabolic conversion and replenishment in neurons. Furthermore, variations in the astroglial coverage of synapses can thus determine to what extent glutamate released into the synaptic cleft could activate its receptors outside the cleft. The biophysical determinants of extrasynaptic glutamate actions are complex because they involve a competition between transporters and target receptors of glutamate in the tortuous space of synaptic environment. To understand key spatiotemporal relationships between the extrasynaptic landscapes of bound and free glutamate, we explored a detailed Monte Carlo model for its release, diffusion, and uptake. We implemented a novel representation of brain neuropil in silico as a space filled with randomly scattered, overlapping spheres (spheroids) of distributed size. The parameters of perisynaptic space, astroglial presence, and glutamate transport were constrained by the empirical data obtained for the 'average' environment of common cortical synapses. Our simulations provide a glimpse of the perisynaptic concentration landscapes of free and transporter-bound glutamate relationship, suggesting a significant tail of space-average free glutamate within 3 ms post-release.

11.
Nat Protoc ; 17(12): 3056-3079, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36064755

RESUMO

Population behavior of signaling molecules on the cell surface is key to their adaptive function. Live imaging of proteins tagged with fluorescent molecules has been an essential tool in understanding this behavior. Typically, genetic or chemical tags are used to target molecules present throughout the cell, whereas antibody-based tags label the externally exposed molecular domains only. Both approaches could potentially overlook the intricate process of in-out membrane recycling in which target molecules appear or disappear on the cell surface. This limitation is overcome by using a pH-sensitive fluorescent tag, such as Super-Ecliptic pHluorin (SEP), because its emission depends on whether it resides inside or outside the cell. Here we focus on the main glial glutamate transporter GLT1 and describe a genetic design that equips GLT1 molecules with SEP without interfering with the transporter's main function. Expressing GLT1-SEP in astroglia in cultures or in hippocampal slices enables monitoring of the real-time dynamics of the cell-surface and cytosolic fractions of the transporter in living cells. Whole-cell fluorescence recovery after photobleaching and quantitative image-kinetic analysis of the resulting time-lapse images enables assessment of the rate of GLT1-SEP recycling on the cell surface, a fundamental trafficking parameter unattainable previously. The present protocol takes 15-20 d to set up cell preparations, and 2-3 d to carry out live cell experiments and data analyses. The protocol can be adapted to study different membrane molecules of interest, particularly those proteins whose lifetime on the cell surface is critical to their adaptive function.


Assuntos
Recuperação de Fluorescência Após Fotodegradação , Recuperação de Fluorescência Após Fotodegradação/métodos , Cinética , Proteínas de Fluorescência Verde/metabolismo , Membrana Celular/metabolismo , Transporte Proteico , Concentração de Íons de Hidrogênio , Fotodegradação
12.
Cell Death Dis ; 13(8): 747, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038575

RESUMO

Brain ischemic stroke is among the leading causes of death and long-term disability. New treatments that alleviate brain cell damage until blood supply is restored are urgently required. The emerging focus of anti-stroke strategies has been on blood-brain-barrier permeable drugs that exhibit multiple sites of action. Here, we combine single-cell electrophysiology with live-cell imaging to find that ß-Alanine (ß-Ala) protects key physiological functions of brain cells that are exposed to acute stroke-mimicking conditions in ex vivo brain preparations. ß-Ala exerts its neuroprotective action through several distinct pharmacological mechanisms, none of which alone could reproduce the neuroprotective effect. Since ß-Ala crosses the blood-brain barrier and is part of a normal human diet, we suggest that it has a strong potential for acute stroke treatment and facilitation of recovery.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Encéfalo , Lesões Encefálicas/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , beta-Alanina/farmacologia
14.
Glia ; 70(5): 961-974, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35084774

RESUMO

Glutamatergic transmission prompts K+ efflux through postsynaptic NMDA receptors. The ensuing hotspot of extracellular K+ elevation depolarizes presynaptic terminal, boosting glutamate release, but whether this also affects glutamate uptake in local astroglia has remained an intriguing question. Here, we find that the pharmacological blockade, or conditional knockout, of postsynaptic NMDA receptors suppresses use-dependent increase in the amplitude and duration of the astrocytic glutamate transporter current (IGluT ), whereas blocking astrocytic K+ channels prevents the duration increase only. Glutamate spot-uncaging reveals that astrocyte depolarization, rather than extracellular K+ rises per se, is required to reduce the amplitude and duration of IGluT . Biophysical simulations confirm that local transient elevations of extracellular K+ can inhibit local glutamate uptake in fine astrocytic processes. Optical glutamate sensor imaging and a two-pathway test relate postsynaptic K+ efflux to enhanced extrasynaptic glutamate signaling. Thus, repetitive glutamatergic transmission triggers a feedback loop in which postsynaptic K+ efflux can transiently facilitate presynaptic release while reducing local glutamate uptake.


Assuntos
Ácido Glutâmico , Receptores de N-Metil-D-Aspartato , Animais , Astrócitos , Ratos , Ratos Sprague-Dawley , Sinapses
15.
Alzheimers Dement ; 18(2): 318-338, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34057756

RESUMO

INTRODUCTION: The second most common form of early-onset dementia-frontotemporal dementia (FTD)-is often characterized by the aggregation of the microtubule-associated protein tau. Here we studied the mechanism of tau-induced neuronal dysfunction in neurons with the FTD-related 10+16 MAPT mutation. METHODS: Live imaging, electrophysiology, and redox proteomics were used in 10+16 induced pluripotent stem cell-derived neurons and a model of tau spreading in primary cultures. RESULTS: Overproduction of mitochondrial reactive oxygen species (ROS) in 10+16 neurons alters the trafficking of specific glutamate receptor subunits via redox regulation. Increased surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors containing GluA1 and NR2B subunits leads to impaired glutamatergic signaling, calcium overload, and excitotoxicity. Mitochondrial antioxidants restore the altered response and prevent neuronal death. Importantly, extracellular 4R tau induces the same pathological response in healthy neurons, thus proposing a mechanism for disease propagation. DISCUSSION: These results demonstrate mitochondrial ROS modulate glutamatergic signaling in FTD, and suggest a new therapeutic strategy.


Assuntos
Demência Frontotemporal , Células-Tronco Pluripotentes Induzidas , Demência Frontotemporal/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas tau/metabolismo
16.
Front Cell Neurosci ; 15: 707813, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366791

RESUMO

The surface of astrocyte processes that often surround excitatory synapses is packed with high-affinity glutamate transporters, largely preventing extrasynaptic glutamate escape. The shape and prevalence of perisynaptic astroglia vary among brain regions, in some cases providing a complete isolation of synaptic connections from the surrounding tissue. The perception has been that the geometry of perisynaptic environment is therefore essential to preventing extrasynaptic glutamate escape. To understand to what degree this notion holds, we modelled brain neuropil as a space filled with a scatter of randomly sized, overlapping spheres representing randomly shaped cellular elements and intercellular lumen. Simulating release and diffusion of glutamate molecules inside the interstitial gaps in this medium showed that high-affinity transporters would efficiently constrain extrasynaptic spread of glutamate even when diffusion passages are relatively open. We thus estimate that, in the hippocampal or cerebellar neuropil, the bulk of glutamate released by a synaptic vesicle is rapidly bound by transporters (or high-affinity target receptors) mainly in close proximity of the synaptic cleft, whether or not certain physiological or pathological events change local tissue geometry.

17.
Cell Death Dis ; 12(8): 716, 2021 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-34274950

RESUMO

Human iPSC lines represent a powerful translational model of tauopathies. We have recently described a pathophysiological phenotype of neuronal excitability of human cells derived from the patients with familial frontotemporal dementia and parkinsonism (FTDP-17) caused by the MAPT 10+16 splice-site mutation. This mutation leads to the increased splicing of 4R tau isoforms. However, the role of different isoforms of tau protein in initiating neuronal dementia-related dysfunction, and the causality between the MAPT 10+16 mutation and altered neuronal activity have remained unclear. Here, we employed genetically engineered cells, in which the IVS10+16 mutation was introduced into healthy donor iPSCs to increase the expression of 4R tau isoform in exon 10, aiming to explore key physiological traits of iPSC-derived MAPT IVS10+16 neurons using patch-clamp electrophysiology and multiphoton fluorescent imaging techniques. We found that during late in vitro neurogenesis (from ~180 to 230 days) iPSC-derived cortical neurons of the control group (parental wild-type tau) exhibited membrane properties compatible with "mature" neurons. In contrast, MAPT IVS10+16 neurons displayed impaired excitability, as reflected by a depolarized resting membrane potential, an increased input resistance, and reduced voltage-gated Na+- and K+-channel-mediated currents. The mutation changed the channel properties of fast-inactivating Nav and decreased the Nav1.6 protein level. MAPT IVS10+16 neurons exhibited reduced firing accompanied by a changed action potential waveform and severely disturbed intracellular Ca2+ dynamics, both in the soma and dendrites, upon neuronal depolarization. These results unveil a causal link between the MAPT 10+16 mutation, hence overproduction of 4R tau, and a dysfunction of human cells, identifying a biophysical basis of changed neuronal activity in 4R tau-triggered dementia. Our study lends further support to using iPSC lines as a suitable platform for modelling tau-induced human neuropathology in vitro.


Assuntos
Demência/genética , Demência/fisiopatologia , Engenharia Genética , Células-Tronco Pluripotentes Induzidas/patologia , Mutação/genética , Neurônios/patologia , Proteínas tau/genética , Potenciais de Ação , Linhagem Celular , Membrana Celular/metabolismo , Humanos , Proteínas Mutantes/metabolismo , Neurogênese , Canais de Potássio/metabolismo , Canais de Sódio/metabolismo
18.
Neuropharmacology ; 195: 108688, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34174263

RESUMO

Behaviour of a mammal relies on the brain's excitatory circuits equipped with glutamatergic synapses. In most cases, glutamate escaping from the synaptic cleft is rapidly buffered and taken up by high-affinity transporters expressed by nearby perisynaptic astroglial processes (PAPs). The spatial relationship between glutamatergic synapses and PAPs thus plays a crucial role in understanding glutamate signalling actions, yet its intricate features can only be fully appreciated using methods that operate beyond the diffraction limit of light. Here, we examine principal aspects pertaining to the receptor actions of glutamate, inside and outside the synaptic cleft in the brain, where the organisation of synaptic micro-physiology and micro-environment play a critical part. In what conditions and how far glutamate can escape the synaptic cleft activating its target receptors outside the immediate synapse has long been the subject of debate. Evidence is also emerging that neuronal activity- and astroglia-dependent glutamate spillover actions could be important across the spectrum of cognitive functions This article is part of the special issue on 'Glutamate Receptors - The Glutamatergic Synapse'.


Assuntos
Espinhas Dendríticas/metabolismo , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Receptores de Glutamato/metabolismo , Sinapses/metabolismo , Animais , Astrócitos/metabolismo , Humanos
19.
Elife ; 102021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33860761

RESUMO

Glutamate uptake by astroglial transporters confines excitatory transmission to the synaptic cleft. The efficiency of this mechanism depends on the transporter dynamics in the astrocyte membrane, which remains poorly understood. Here, we visualise the main glial glutamate transporter GLT1 by generating its pH-sensitive fluorescent analogue, GLT1-SEP. Fluorescence recovery after photobleaching-based imaging shows that 70-75% of GLT1-SEP dwell on the surface of rat brain astroglia, recycling with a lifetime of ~22 s. Genetic deletion of the C-terminus accelerates GLT1-SEP membrane turnover while disrupting its surface pattern, as revealed by single-molecule localisation microscopy. Excitatory activity boosts surface mobility of GLT1-SEP, involving its C-terminus, metabotropic glutamate receptors, intracellular Ca2+, and calcineurin-phosphatase activity, but not the broad-range kinase activity. The results suggest that membrane turnover, rather than lateral diffusion, is the main 'redeployment' route for the immobile fraction (20-30%) of surface-expressed GLT1. This finding reveals an important mechanism helping to control extrasynaptic escape of glutamate.


Assuntos
Astrócitos/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Animais , Ratos , Ratos Sprague-Dawley
20.
Biophys J ; 120(8): 1431-1442, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33609495

RESUMO

In obstacle-filled media, such as extracellular or intracellular lumen of brain tissue, effective ion-diffusion permeability is a key determinant of electrogenic reactions. Although this diffusion permeability is thought to depend entirely on structural features of the medium, such as porosity and tortuosity, brain tissue shows prominent nonohmic properties, the origins of which remain poorly understood. Here, we explore Monte Carlo simulations of ion diffusion in a space filled with overlapping spheres to predict that diffusion permeability of such media decreases with stronger external electric fields. This dependence increases with lower medium porosity while decreasing with radial (two-dimensional or three-dimensional) compared with homogenous (one-dimensional) fields. We test our predictions empirically in an electrolyte chamber filled with microscopic glass spheres and find good correspondence with our predictions. A theoretical insight relates this phenomenon to a disproportionately increased dwell time of diffusing ions at potential barriers (or traps) representing geometric obstacles when the field strength increases. The dependence of medium ion-diffusion permeability on electric field could be important for understanding conductivity properties of porous materials, in particular for the accurate interpretation of electric activity recordings in brain tissue.


Assuntos
Porosidade , Difusão , Condutividade Elétrica , Método de Monte Carlo , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...