Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732675

RESUMO

Pervaporation is considered the most promising technology for dehydration of bioalcohols, attracting increasing attention as a renewable energy source. In this regard, the development of stable and effective membranes is required. In this study, highly efficient membranes for the enhanced pervaporation dehydration of ethanol were developed by modification of sodium alginate (SA) with a polyethylenimine (PEI) forming polyelectrolyte complex (PEC) and graphene oxide (GO). The effect of modifications with GO or/and PEI on the structure, physicochemical, and transport characteristics of dense membranes was studied. The formation of a PEC by ionic cross-linking and its interaction with GO led to changes in membrane structure, confirmed by spectroscopic and microscopic methods. The physicochemical properties of membranes were investigated by a thermogravimetric analysis, a differential scanning calorimetry, and measurements of contact angles. The theoretical consideration using computational methods showed favorable hydrogen bonding interactions between GO, PEI, and water, which caused improved membrane performance. To increase permeability, supported membranes without treatment and cross-linked were developed by the deposition of a thin dense layer from the optimal PEC/GO (2.5%) composite onto a developed porous substrate from polyacrylonitrile. The cross-linked supported membrane demonstrated more than two times increased permeation flux, higher selectivity (above 99.7 wt.% water in the permeate) and stability for separating diluted mixtures compared to the dense pristine SA membrane.

2.
Phys Chem Chem Phys ; 26(18): 13850-13861, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38656824

RESUMO

Isocyanates play an essential role in modern manufacturing processes, especially in polyurethane production. There are numerous synthesis strategies for isocyanates both under industrial and laboratory conditions, which do not prevent searching for alternative highly efficient synthetic protocols. Here, we report a detailed theoretical investigation of the mechanism of sulfur dioxide-catalyzed rearrangement of phenylnitrile oxide into phenyl isocyanate, which was first reported in 1977. The DLPNO-CCSD(T) method and up-to-date DFT protocols were used to perform a highly accurate quantum-chemical study of the rearrangement mechanism. An overview of various organic and inorganic catalysts has revealed other potential catalysts, such as sulfur trioxide and selenium dioxide. Furthermore, the present study elucidated how substituents in phenylnitrile oxide influence reaction kinetics. This study was performed by a self-organized collaboration of scientists initiated by a humorous post on the VK social network.

3.
Dalton Trans ; 51(29): 10909-10919, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35792083

RESUMO

A family of ionic ferric catecholate complexes 1-4 bearing a disubstituted 3,6-di-tert-butyl-catecholate ligand (3,6-DBCatH2) and tetradentate tris(2-pyridylmethyl)amine (TPA) was prepared and its spin transitions were investigated. Variation of the outer-sphere counteranions (PF6, BPh4, ClO4, BF4) is accompanied by changes in the magnetic behavior of the compounds under consideration. The crystal structures of complexes 1, 3 and 4 were determined by single crystal X-ray diffraction analysis at 100 K and 293 K. The complexes were characterized by the occurrence of a thermally induced spin-crossover process in the solid state with different degrees of completeness, which was confirmed by the comprehensive spectroscopic investigation (EPR, magnetic susceptibility, Mössbauer, and XAS) of the isolated compounds. Complex 4 containing BF4 anions was found to demonstrate valence tautomeric transition along with spin-crossover. This finding makes compound 4 the first salt-like mononuclear ferric catecholate complex exhibiting valence tautomerism.

4.
Inorg Chem ; 61(9): 3875-3885, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35192334

RESUMO

Functionalization of metal-organic frameworks (MOFs) with noble metal nanoparticles (NPs) is a challenging task. Conventional impregnation by metals often leads to agglomerates on the surface of MOF crystals. Functional groups on linkers interact with metal precursors and promote the homogeneous distribution of NPs in the pores of MOFs, but their uncontrolled localization can block channels and thus hinder mass transport. To overcome this problem, we created nucleation centers only in the defective pores of the UiO-66 MOF via the postsynthesis exchange. First, we have introduced defects into UiO-66 using benzoic acid as a modulator. Second, the modulator was exchanged for amino-benzoic acid. As a result, amino groups have decorated mainly the defective pores and attracted the Pd precursor after impregnation. The interaction of the metal precursor with amino groups and the growth of NPs were monitored by in situ infrared spectroscopy. Three processes were distinguished: the gaseous HCl release, NH2 reactivation, and growth of extended Pd surfaces. Uniform Pd NPs were located in the pores because of the homogeneous distribution of the precursor and pore diffusion-limited nucleation rate. Our work demonstrates an alternative approach of controlled Pd incorporation into UiO-66 that is of great importance for the rational design of heterogeneous catalysts.

5.
Molecules ; 27(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35056671

RESUMO

Catalytic properties of noble-metal nanoparticles (NPs) are largely determined by their surface morphology. The latter is probed by surface-sensitive spectroscopic techniques in different spectra regions. A fast and precise computational approach enabling the prediction of surface-adsorbate interaction would help the reliable description and interpretation of experimental data. In this work, we applied Machine Learning (ML) algorithms for the task of adsorption-energy approximation for CO on Pd nanoclusters. Due to a high dependency of binding energy from the nature of the adsorbing site and its local coordination, we tested several structural descriptors for the ML algorithm, including mean Pd-C distances, coordination numbers (CN) and generalized coordination numbers (GCN), radial distribution functions (RDF), and angular distribution functions (ADF). To avoid overtraining and to probe the most relevant positions above the metal surface, we utilized the adaptive sampling methodology for guiding the ab initio Density Functional Theory (DFT) calculations. The support vector machines (SVM) and Extra Trees algorithms provided the best approximation quality and mean absolute error in energy prediction up to 0.12 eV. Based on the developed potential, we constructed an energy-surface 3D map for the whole Pd55 nanocluster and extended it to new geometries, Pd79, and Pd85, not implemented in the training sample. The methodology can be easily extended to adsorption energies onto mono- and bimetallic NPs at an affordable computational cost and accuracy.

6.
Analyst ; 145(23): 7534-7540, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-32966356

RESUMO

Synchrotron-based X-ray absorption spectroscopy and scattering are known in situ probes of metal nanoparticles (NPs). A limited number of laboratory techniques allow post-synthesis diagnostics of the active metal surface area. This work demonstrates the high potential of infrared spectroscopy as an in situ laboratory probe for the growth of metal NPs on a substrate. We introduce a small fraction of CO molecules into the reaction mixture as a probe to monitor the reduction kinetics of the Pd2+ precursor on ceria in hydrogen.

7.
Nanomaterials (Basel) ; 10(7)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629755

RESUMO

: We report here a simple two-stage synthesis of zinc-cobalt oxide nanoparticles. We used Zn/Co-zeolite imidazolate framework (ZIF)-8 materials as precursors for annealing and optional impregnation with a silicon source for the formation of a protective layer on the surface of oxide nanoparticles. Using bimetallic ZIFs allowed us to trace the phase transition of the obtained oxide nanoparticles from wurtzite ZnO to spinel Co3O4 structures. Using (X-Ray diffraction) XRD and (X-ray Absorption Near Edge Structure) XANES techniques, we confirmed the incorporation of cobalt ions into the ZnO structure up to 5 mol.% of Co. Simple annealing of Zn/Co-ZIF-8 materials in the air led to the formation of oxide nanoparticles of about 20-30 nm, while additional treatment of ZIFs with silicon source resulted in nanoparticles of about 5-10 nm covered with protective silica layer. We revealed the incorporation of oxygen vacancies in the obtained ZnO nanoparticles using FTIR analysis. All obtained samples were comprehensively characterized, including analysis with a synchrotron radiation source.

8.
ACS Appl Mater Interfaces ; 10(26): 21957-21964, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29863834

RESUMO

Cation-disordered oxides have been ignored as positive electrode material for a long time due to structurally limited lithium insertion/extraction capabilities. In this work, a case study is carried out on nickel-based cation-disordered Fm3 ̅m LiNi0.5M0.5O2 positive electrode materials. The present investigation targets tailoring the electrochemical properties for nickel-based cation-disordered rock-salt by electronic considerations. The compositional space for binary LiM+3O2 with metals active for +3/+4 redox couples is extended to ternary oxides with LiA0.5B0.5O2 with A = Ni2+ and B = Ti4+, Zr4+, and V+4 to assess the impact of the different transition metals in the isostructural oxides. The direct synthesis of various new unknown ternary nickel-based Fm3̅ m cation-disordered rock-salt positive electrode materials is presented with a particular focus on the LiNi0.5V0.5O2 system. This positive electrode material for Li-ion batteries displays an average voltage of ∼2.55 V and a high discharge capacity of 264 mAhg-1 corresponding to 0.94 Li. For appropriate cutoff voltages, a long cycle life is achieved. The charge compensation mechanism is probed by XANES, confirming the reversible oxidation and reduction of V4+/V5+. The enhancement in the electrochemical performances within the presented compounds stresses the importance of mixed cation-disordered transition metal oxides with different electronic configuration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...