Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 51(4): 2413-2423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431967

RESUMO

BACKGROUND: Individuals with asthma can vary widely in clinical presentation, severity, and pathobiology. Hyperpolarized xenon-129 (Xe129) MRI is a novel imaging method to provide 3-D mapping of both ventilation and gas exchange in the human lung. PURPOSE: To evaluate the functional changes in adults with asthma as compared to healthy controls using Xe129 MRI. METHODS: All subjects (20 controls and 20 asthmatics) underwent lung function measurements and Xe129 MRI on the same day. Outcome measures included the pulmonary ventilation defect and transfer of inspired Xe129 into two soluble compartments: tissue and blood. Ten asthmatics underwent Xe129 MRI before and after bronchodilator to test whether gas transfer measures change with bronchodilator effects. RESULTS: Initial analysis of the results revealed striking differences in gas transfer measures based on age, hence we compared outcomes in younger (n = 24, ≤ 35 years) versus older (n = 16, > 45 years) asthmatics and controls. The younger asthmatics exhibited significantly lower Xe129 gas uptake by lung tissue (Asthmatic: 0.98% ± 0.24%, Control: 1.17% ± 0.12%, P = 0.035), and higher Xe129 gas transfer from tissue to the blood (Asthmatic: 0.40 ± 0.10, Control: 0.31% ± 0.03%, P = 0.035) than the younger controls. No significant difference in Xe129 gas transfer was observed in the older group between asthmatics and controls (P > 0.05). No significant change in Xe129 transfer was observed before and after bronchodilator treatment. CONCLUSIONS: By using Xe129 MRI, we discovered heterogeneous alterations of gas transfer that have associations with age. This finding suggests a heretofore unrecognized physiological derangement in the gas/tissue/blood interface in young adults with asthma that deserves further study.


Assuntos
Asma , Broncodilatadores , Adulto Jovem , Humanos , Adulto , Broncodilatadores/uso terapêutico , Barreira Alveolocapilar , Pulmão/diagnóstico por imagem , Asma/diagnóstico por imagem , Asma/tratamento farmacológico , Isótopos de Xenônio , Imageamento por Ressonância Magnética/métodos , Xenônio/uso terapêutico
2.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339217

RESUMO

Molecular magnetic resonance imaging (MRI) is an emerging field that is set to revolutionize our perspective of disease diagnosis, treatment efficacy monitoring, and precision medicine in full concordance with personalized medicine. A wide range of hyperpolarized (HP) 129Xe biosensors have been recently developed, demonstrating their potential applications in molecular settings, and achieving notable success within in vitro studies. The favorable nuclear magnetic resonance properties of 129Xe, coupled with its non-toxic nature, high solubility in biological tissues, and capacity to dissolve in blood and diffuse across membranes, highlight its superior role for applications in molecular MRI settings. The incorporation of reporters that combine signal enhancement from both hyperpolarized 129Xe and chemical exchange saturation transfer holds the potential to address the primary limitation of low sensitivity observed in conventional MRI. This review provides a summary of the various applications of HP 129Xe biosensors developed over the last decade, specifically highlighting their use in MRI. Moreover, this paper addresses the evolution of in vivo applications of HP 129Xe, discussing its potential transition into clinical settings.


Assuntos
Imageamento por Ressonância Magnética , Isótopos de Xenônio , Isótopos de Xenônio/química , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Solubilidade , Xenônio/química
3.
Acad Radiol ; 31(4): 1666-1675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37977888

RESUMO

RATIONALE AND OBJECTIVES: The current clinical standard for functional imaging of patients with lung ailments is nuclear medicine scintigraphy and Single Photon Emission Computed Tomography (SPECT) which detect the gamma decay of inhaled radioactive tracers. Hyperpolarized (HP) Xenon-129 MRI (XeMRI) of the lungs has recently been FDA approved and provides similar functional images of the lungs with higher spatial resolution than scintigraphy and SPECT. Here we compare Technetium-99m (99mTc) diethylene-triamine-pentaacetate scintigraphy and SPECT with HP XeMRI in healthy controls, asthma, and chronic obstructive pulmonary disorder (COPD) patients. MATERIALS AND METHODS: 59 subjects, healthy, with asthma, and with COPD, underwent 99mTc scintigraphy/SPECT, standard spirometry, and HP XeMRI. XeMRI and SPECT images were registered for direct voxel-wise signal comparisons. Images were also compared using ventilation defect percentage (VDP), and a standard 6-compartment method. VDP calculated from XeMRI and SPECT images was compared to spirometry. RESULTS: Median Pearson correlation coefficient for voxel-wise signal comparison was 0.698 (0.613-0.782) between scintigraphy and XeMRI and 0.398 (0.286-0.502) between SPECT and XeMRI. Correlation between VDP measures was r = 0.853, p < 0.05. VDP separated asthma and COPD from the control group and was significantly correlated with FEV1, FEV1/FVC, and FEF 25-75. CONCLUSION: HP XeMRI provides equivalent information to 99mTc SPECT and standard spirometry measures. Additionally, XeMRI is non-invasive, hence it could be used for longitudinal studies for evaluating emerging treatment for lung ailments.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Isótopos de Xenônio , Humanos , Testes de Função Respiratória , Pulmão/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único , Imageamento por Ressonância Magnética/métodos , Asma/diagnóstico por imagem
4.
ACS Sens ; 8(12): 4707-4715, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38064687

RESUMO

Hyperpolarized (HP) xenon-129 (129Xe) magnetic resonance imaging (MRI) has the potential to be used as a molecular imaging modality. For this purpose, numerous supramolecular cages have been developed and evaluated in the past. Herein, we report a novel and unique macrocycle that can be successfully utilized for xenon MRI, the resorcinarene trimer methanesulfonate (R3-Noria-MeSO3H). This molecule is capable of two different contrast mechanisms for xenon-MRI, resulting from an increase in the effective spin-spin relaxation and hyperpolarized chemical exchange saturation transfer (HyperCEST). We have demonstrated a superior negative contrast caused by R3-Noria-MeSO3H on HP 129Xe MRI at 3.0 T as well as HyperCEST imaging of the studied macrocycle. Additionally, we have found that the complex aggregation behaviors of R3-Noria-methanesulfonate and its impact on xenon-129 relaxivity are an area for future study.


Assuntos
Imageamento por Ressonância Magnética , Isótopos de Xenônio , Imageamento por Ressonância Magnética/métodos , Isótopos de Xenônio/química , Xenônio/química , Meios de Contraste/química , Mesilatos
5.
Chemphyschem ; 24(23): e202300828, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38062347

RESUMO

The front cover artwork is provided by Prof. Mitchell S. Albert's group at Lakehead University. The image shows the hyperpolarized chemical exchange saturation transfer (HyperCEST) effect in cucurbit[6]uril molecular biosensors within a blood vessel. Read the full text of the Research Article at 10.1002/cphc.202300346.

6.
Chemphyschem ; 24(23): e202300346, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37713677

RESUMO

Molecular imaging is the future of personalized medicine; however, it requires effective contrast agents. Hyperpolarized chemical exchange saturation transfer (HyperCEST) can boost the signal of Hyperpolarized 129 Xe MRI and render it a molecular imaging modality of high efficiency. Cucurbit[6]uril (CB6) has been successfully employed in vivo as a contrast agent for HyperCEST MRI, however its performance in a clinical MRI scanner has yet to be optimized. In this study, MRI pulse sequence parameter optimization was first performed in CB6 solutions in phosphate-buffered saline (PBS), and subsequently in whole sterile citrated bovine blood. The performance of four different depolarization pulse shapes (sinusoidal, 3-lobe sinc (3LS), rectangular (block), and hyperbolic secant (hypsec) was optimized. The detectability limits of CB6 in a clinical 3.0T MRI scanner was assessed using the optimized pulse sequences. The 3LS depolarization pulses performed best, and demonstrated 24 % depletion in a 25 µM solution of CB6 in PBS. It performed similarly in blood. The CB6 detectability limit was found to be 100 µM in citrated bovine blood with a correspondent HyperCEST depletion of 30 % ±9 %. For the first time, the HP 129 Xe HyperCEST effect was observed in red blood cells (RBC) and had a similar strength as HyperCEST in plasma.


Assuntos
Imageamento por Ressonância Magnética , Isótopos de Xenônio , Animais , Bovinos , Espectroscopia de Ressonância Magnética/métodos , Isótopos de Xenônio/química , Imageamento por Ressonância Magnética/métodos , Meios de Contraste , Imagem Molecular
7.
Biomedicines ; 11(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37371626

RESUMO

PURPOSE: The existing tools to quantify lung function in interstitial lung diseases have significant limitations. Lung MRI imaging using inhaled hyperpolarized xenon-129 gas (129Xe) as a contrast agent is a new technology for measuring regional lung physiology. We sought to assess the utility of the 129Xe MRI in detecting impaired lung physiology in usual interstitial pneumonia (UIP). MATERIALS AND METHODS: After institutional review board approval and informed consent and in compliance with HIPAA regulations, we performed chest CT, pulmonary function tests (PFTs), and 129Xe MRI in 10 UIP subjects and 10 healthy controls. RESULTS: The 129Xe MRI detected highly heterogeneous abnormalities within individual UIP subjects as compared to controls. Subjects with UIP had markedly impaired ventilation (ventilation defect fraction: UIP: 30 ± 9%; healthy: 21 ± 9%; p = 0.026), a greater amount of 129Xe dissolved in the lung interstitium (tissue-to-gas ratio: UIP: 1.45 ± 0.35%; healthy: 1.10 ± 0.17%; p = 0.014), and impaired 129Xe diffusion into the blood (RBC-to-tissue ratio: UIP: 0.20 ± 0.06; healthy: 0.28 ± 0.05; p = 0.004). Most MRI variables had no correlation with the CT and PFT measurements. The elevated level of 129Xe dissolved in the lung interstitium, in particular, was detectable even in subjects with normal or mildly impaired PFTs, suggesting that this measurement may represent a new method for detecting early fibrosis. CONCLUSION: The hyperpolarized 129Xe MRI was highly sensitive to regional functional changes in subjects with UIP and may represent a new tool for understanding the pathophysiology, monitoring the progression, and assessing the effectiveness of treatment in UIP.

8.
Acad Radiol ; 29 Suppl 2: S82-S90, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33487537

RESUMO

PURPOSE: In this study, we compared hyperpolarized 3He and 129Xe images from patients with cystic fibrosis using two commonly applied magnetic resonance sequences, standard gradient echo (GRE) and balanced steady-state free precession (TrueFISP) to quantify regional similarities and differences in signal distribution and defect analysis. MATERIALS AND METHODS: Ten patients (7M/3F) with cystic fibrosis underwent hyperpolarized gas MR imaging with both 3He and 129Xe. Six had MRI with both GRE, and TrueFISP sequences and four patients had only GRE sequence but not TrueFISP. Ventilation defect percentages (VDPs) were calculated as lung voxels with <60% of the whole-lung hyperpolarized gas signal mean and was measured in all datasets. The voxel signal distributions of both 129Xe and 3He gases were visualized and compared using violin plots. VDPs of hyperpolarized 3 He and 129 Xe were compared in Bland-Altman plots; Pearson correlation coefficients were used to evaluate the relationships between inter-gas and inter-scan to assess the reproducibility. RESULTS: A significant correlation was demonstrated between 129Xe VDP and 3He VDP for both GRE and TrueFISP sequences (ρ = 0.78, p<0.0004). The correlation between the GRE and TrueFISP VDP for 3He was ρ = 0.98 and was ρ = 0.91 for 129Xe. Overall, 129Xe (27.2±9.4) VDP was higher than 3He (24.3±6.9) VDP on average on cystic fibrosis patients. CONCLUSION: In patients with cystic fibrosis, the selection of hyperpolarized 129Xe or 3He gas is most likely inconsequential when it comes to measure the overall lung function by VDP although 129Xe may be more sensitive to starker lung defects, particularly when using a TrueFISP sequence.


Assuntos
Fibrose Cística , Fibrose Cística/diagnóstico por imagem , Hélio , Humanos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Masculino , Reprodutibilidade dos Testes , Isótopos de Xenônio
9.
Am J Respir Crit Care Med ; 202(4): 524-534, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32510976

RESUMO

Rationale: Adverse events have limited the use of bronchial thermoplasty (BT) in severe asthma.Objectives: We sought to evaluate the effectiveness and safety of using 129Xe magnetic resonance imaging (129Xe MRI) to prioritize the most involved airways for guided BT.Methods: Thirty subjects with severe asthma were imaged with volumetric computed tomography and 129Xe MRI to quantitate segmental ventilation defects. Subjects were randomized to treatment of the six most involved airways in the first session (guided group) or a standard three-session BT (unguided). The primary outcome was the change in Asthma Quality of Life Questionnaire score from baseline to 12 weeks after the first BT for the guided group compared with after three treatments for the unguided group.Measurements and Main Results: There was no significant difference in quality of life after one guided compared with three unguided BTs (change in Asthma Quality of Life Questionnaire guided = 0.91 [95% confidence interval, 0.28-1.53]; unguided = 1.49 [95% confidence interval, 0.84-2.14]; P = 0.201). After one BT, the guided group had a greater reduction in the percentage of poorly and nonventilated lung from baseline when compared with unguided (-17.2%; P = 0.009). Thirty-three percent experienced asthma exacerbations after one guided BT compared with 73% after three unguided BTs (P = 0.028).Conclusions: Results of this pilot study suggest that similar short-term improvements can be achieved with one BT treatment guided by 129Xe MRI when compared with standard three-treatment-session BT with fewer periprocedure adverse events.


Assuntos
Asma/cirurgia , Termoplastia Brônquica/métodos , Imageamento por Ressonância Magnética/métodos , Cirurgia Assistida por Computador , Isótopos de Xenônio/uso terapêutico , Adulto , Termoplastia Brônquica/efeitos adversos , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Qualidade de Vida , Índice de Gravidade de Doença , Resultado do Tratamento
10.
J Thorac Imaging ; 31(5): 285-95, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27428024

RESUMO

The assessment of early pulmonary disease and its severity can be difficult in young children, as procedures such as spirometry cannot be performed on them. Computed tomography provides detailed structural images of the pulmonary parenchyma, but its major drawback is that the patient is exposed to ionizing radiation. In this context, magnetic resonance imaging (MRI) is a promising technique for the evaluation of pediatric lung disease, especially when serial imaging is needed. Traditionally, MRI played a small role in evaluating the pulmonary parenchyma. Because of its low proton density, the lungs display low signal intensity on conventional proton-based MRI. Hyperpolarized (HP) gases are inhaled contrast agents with an excellent safety profile and provide high signal within the lung, allowing for high temporal and spatial resolution imaging of the lung airspaces. Besides morphologic information, HP MR images also offer valuable information about pulmonary physiology. HP gas MRI has already made new contributions to the understanding of pediatric lung diseases and may become a clinically useful tool. In this article, we discuss the HP gas MRI technique, special considerations that need to be made when imaging children, and the role of MRI in 2 of the most common chronic pediatric lung diseases, asthma and cystic fibrosis. We also will discuss how HP gas MRI may be used to evaluate normal lung growth and development and the alterations occurring in chronic lung disease of prematurity and in patients with a congenital diaphragmatic hernia.


Assuntos
Pneumopatias/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adolescente , Criança , Pré-Escolar , Humanos , Lactente , Adulto Jovem
11.
Magn Reson Med ; 75(4): 1771-80, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26017009

RESUMO

PURPOSE: To investigate whether chemical shift saturation recovery (CSSR) MR spectroscopy with hyperpolarized xenon-129 is sensitive to the pulsatile nature of pulmonary blood flow during the cardiac cycle. METHODS: A CSSR pulse sequence typically uses radiofrequency (RF) pulses to saturate the magnetization of xenon-129 dissolved in lung tissue followed, after a variable delay time, by an RF excitation and subsequent acquisition of a free-induction decay. Thereby it is possible to monitor the uptake of xenon-129 by lung tissue and extract physiological parameters of pulmonary gas exchange. In the current studies, the delay time was instead held at a constant value, which permitted observation of xenon-129 gas uptake as a function of breath-hold time. CSSR studies were performed in 13 subjects (10 healthy, 2 chronic obstructive pulmonary disease [COPD], 1 second-hand smoke exposure), holding their breath at total lung capacity. RESULTS: The areas of the tissue/plasma and the red-blood-cell peaks in healthy subjects varied by an average of 1.7±0.7% and 15.1±3.8%, respectively, during the cardiac cycle. In 2 subjects with COPD these peak pulsations were not detectable during at least part of the measurement period. CONCLUSION: CSSR spectroscopy is sufficiently sensitive to detect oscillations in the xenon-129 gas-uptake rate associated with the cardiac cycle.


Assuntos
Capilares/diagnóstico por imagem , Pulmão/irrigação sanguínea , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Isótopos de Xenônio/química , Adulto , Feminino , Humanos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Isótopos de Xenônio/análise , Adulto Jovem
12.
NMR Biomed ; 27(12): 1490-501, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25146558

RESUMO

Magnetic-resonance spectroscopy and imaging using hyperpolarized xenon-129 show great potential for evaluation of the most important function of the human lung -- gas exchange. In particular, chemical shift saturation recovery (CSSR) xenon-129 spectroscopy provides important physiological information for the lung as a whole by characterizing the dynamic process of gas exchange, while dissolved-phase (DP) xenon-129 imaging captures the time-averaged regional distribution of gas uptake by lung tissue and blood. Herein, we present recent advances in assessing lung function using CSSR spectroscopy and DP imaging in a total of 45 subjects (23 healthy, 13 chronic obstructive pulmonary disease (COPD) and 9 asthma). From CSSR acquisitions, the COPD subjects showed red blood cell to tissue-plasma (RBC-to-TP) ratios below the average for the healthy subjects (p < 0.001), but significantly higher septal wall thicknesses as compared with the healthy subjects (p < 0.005); the RBC-to-TP ratios for the asthmatic subjects fell outside two standard deviations (either higher or lower) from the mean of the healthy subjects, although there was no statistically significant difference for the average ratio of the study group as a whole. Similarly, from the 3D DP imaging acquisitions, we found that all the ratios (TP to gas phase (GP), RBC to GP, RBC to TP) measured in the COPD subjects were lower than those from the healthy subjects (p < 0.05 for all ratios), while these ratios in the asthmatic subjects differed considerably between subjects. Despite having been performed at different lung inflation levels, the RBC-to-TP ratios measured by CSSR and 3D DP imaging were fairly consistent with each other, with a mean difference of 0.037 (ratios from 3D DP imaging larger). In ten subjects the RBC-to-GP ratios obtained from the 3D DP imaging acquisitions were also highly correlated with their diffusing capacity of the lung for carbon monoxide per unit alveolar volume ratios measured by pulmonary function testing (R = 0.91).


Assuntos
Asma/fisiopatologia , Pulmão/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Testes de Função Respiratória/métodos , Adolescente , Adulto , Monóxido de Carbono/metabolismo , Simulação por Computador , Eritrócitos/metabolismo , Feminino , Humanos , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Ventilação Pulmonar/fisiologia , Análise Espectral , Isótopos de Xenônio , Adulto Jovem
13.
Magn Reson Med ; 71(1): 339-44, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24155277

RESUMO

PURPOSE: To present in vivo, human validation of a previously proposed method to measure key pulmonary parameters related to lung microstructure and physiology. Some parameters, such as blood-air barrier thickness, cannot be measured readily by any other noninvasive modality. METHODS: Healthy volunteers (n = 12) were studied in 1.5T and 3T whole body human scanners using hyperpolarized xenon. Xenon uptake by lung parenchyma and blood was measured using a chemical shift saturation recovery sequence. Both dissolved-xenon peaks at 197 ppm and 217-218 ppm were fitted against a model of xenon exchange (MOXE) as functions of exchange time. Parameters related to lung function and structure can be obtained by fitting to this model. RESULTS: The following results were obtained from xenon uptake (averaged over all healthy volunteers): surface-area-to-volume ratio = 210 ± 50 cm(-1) ; total septal wall thickness = 9.2 ± 6.5 µm; blood-air barrier thickness = 1.0 ± 0.3 µm; hematocrit = 27 ± 4%; pulmonary capillary blood transit time = 1.3 ± 0.3 s, in good agreement with literature values from invasive experiments. More detailed fitting results are listed in the text. CONCLUSION: The initial in vivo human results demonstrate that our proposed methods can be used to noninvasively determine lung physiology by simultaneous quantification of a few important pulmonary parameters. This method is highly promising to become a versatile screening method for lung diseases.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Pulmão/anatomia & histologia , Pulmão/fisiologia , Troca Gasosa Pulmonar/fisiologia , Volume de Ventilação Pulmonar/fisiologia , Isótopos de Xenônio , Administração por Inalação , Adulto , Idoso , Meios de Contraste/administração & dosagem , Feminino , Humanos , Pulmão/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Cintilografia , Compostos Radiofarmacêuticos/administração & dosagem , Valores de Referência , Reprodutibilidade dos Testes , Testes de Função Respiratória/métodos , Sensibilidade e Especificidade , Isótopos de Xenônio/administração & dosagem , Adulto Jovem
14.
J Magn Reson Imaging ; 39(2): 346-59, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23681559

RESUMO

PURPOSE: To develop a breathhold acquisition for regional mapping of ventilation and the fractions of hyperpolarized xenon-129 (Xe129) dissolved in tissue (lung parenchyma and plasma) and red blood cells (RBCs), and to perform an exploratory study to characterize data obtained in human subjects. MATERIALS AND METHODS: A three-dimensional, multi-echo, radial-trajectory pulse sequence was developed to obtain ventilation (gaseous Xe129), tissue, and RBC images in healthy subjects, smokers, and asthmatics. Signal ratios (total dissolved Xe129 to gas, tissue-to-gas, RBC-to-gas, and RBC-to-tissue) were calculated from the images for quantitative comparison. RESULTS: Healthy subjects demonstrated generally uniform values within coronal slices, and a gradient in values along the anterior-to-posterior direction. In contrast, images and associated ratio maps in smokers and asthmatics were generally heterogeneous and exhibited values mostly lower than those in healthy subjects. Whole-lung values of total dissolved Xe129 to gas, tissue-to-gas, and RBC-to-gas ratios in healthy subjects were significantly larger than those in diseased subjects. CONCLUSION: Regional maps of tissue and RBC fractions of dissolved Xe129 were obtained from a short breathhold acquisition, well tolerated by healthy volunteers and subjects with obstructive lung disease. Marked differences were observed in spatial distributions and overall amounts of Xe129 dissolved in tissue and RBCs among healthy subjects, smokers and asthmatics.


Assuntos
Imageamento Tridimensional/métodos , Pneumopatias/metabolismo , Pulmão/metabolismo , Imageamento por Ressonância Magnética/métodos , Troca Gasosa Pulmonar , Isótopos de Xenônio/farmacocinética , Administração por Inalação , Adolescente , Adulto , Meios de Contraste/administração & dosagem , Meios de Contraste/farmacocinética , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Pneumopatias/diagnóstico , Masculino , Taxa de Depuração Metabólica , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual , Isótopos de Xenônio/administração & dosagem , Adulto Jovem
15.
Magn Reson Med ; 70(2): 576-83, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23132336

RESUMO

Hyperpolarized xenon-129 has the potential to become a noninvasive contrast agent for lung MRI. In addition to its utility for imaging of ventilated airspaces, the property of xenon to dissolve in lung tissue and blood upon inhalation provides the opportunity to study gas exchange. Implementations of imaging protocols for obtaining regional parameters that exploit the dissolved phase are limited by the available signal-to-noise ratio, excitation homogeneity, and length of acquisition times. To address these challenges, a 32-channel receive-array coil complemented by an asymmetric birdcage transmit coil tuned to the hyperpolarized xenon-129 resonance at 3 T was developed. First results of spin-density imaging in healthy subjects and subjects with obstructive lung disease demonstrated the improvements in image quality by high-resolution ventilation images with high signal-to-noise ratio. Parallel imaging performance of the phased-array coil was demonstrated by acceleration factors up to three in 2D acquisitions and up to six in 3D acquisitions. Transmit-field maps showed a regional variation of only 8% across the whole lung. The newly developed phased-array receive coil with the birdcage transmit coil will lead to an improvement in existing imaging protocols, but moreover enable the development of new, functional lung imaging protocols based on the improvements in excitation homogeneity, signal-to-noise ratio, and acquisition speed.


Assuntos
Aumento da Imagem/instrumentação , Pulmão/anatomia & histologia , Pulmão/fisiologia , Imageamento por Ressonância Magnética/instrumentação , Magnetismo/instrumentação , Testes de Função Respiratória/instrumentação , Isótopos de Xenônio , Administração por Inalação , Meios de Contraste/administração & dosagem , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Compostos Radiofarmacêuticos/administração & dosagem , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Eletricidade Estática , Transdutores , Isótopos de Xenônio/administração & dosagem
16.
Magn Reson Med ; 67(4): 943-53, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22213334

RESUMO

Hyperpolarized xenon-129 is a noninvasive contrast agent for lung MRI, which upon inhalation dissolves in parenchymal structures, thus mirroring the gas-exchange process for oxygen in the lung. Multiple-exchange-time xenon polarization transfer contrast (MXTC) MRI is an implementation of the XTC MRI technique in four dimensions (three spatial dimensions plus exchange time). The aim of this study was to evaluate the sensitivity of MXTC MRI for the detection of microstructural deformations of the healthy lung in response to gravity-induced tissue compression and the degree of lung inflation. MXTC MRI was performed in four rabbits and in three healthy human volunteers. Two lung function parameters, one related to tissue- to alveolar-volume ratio and the other to average septal-wall thickness, were determined regionally. A significant gradient in MXTC MRI parameters, consistent with gravity-induced lung tissue deformation in the supine imaging position, was found at low lung volumes. At high lung volumes, parameters were generally lower and the gradient in parameter values was less pronounced. Results show that MXTC MRI permits the quantification of subtle changes in healthy lung microstructure. Further, only structures participating in gas exchange are represented in MXTC MRI data, which potentially makes the technique especially sensitive to pathological changes in lung microstructure affecting gas exchange.


Assuntos
Pulmão/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Administração por Inalação , Animais , Distribuição de Qui-Quadrado , Feminino , Humanos , Imageamento Tridimensional , Masculino , Troca Gasosa Pulmonar/fisiologia , Coelhos , Testes de Função Respiratória , Isótopos de Xenônio/administração & dosagem , Adulto Jovem
17.
J Magn Reson Imaging ; 33(5): 1052-62, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21509861

RESUMO

PURPOSE: To develop and test a method to noninvasively assess the functional lung microstructure. MATERIALS AND METHODS: The Multiple exchange time Xenon polarization Transfer Contrast technique (MXTC) encodes xenon gas-exchange contrast at multiple delay times permitting two lung-function parameters to be derived: (i) MXTC-F, the long exchange-time depolarization value, which is proportional to the tissue to alveolar-volume ratio and (ii) MXTC-S, the square root of the xenon exchange-time constant, which characterizes thickness and composition of alveolar septa. Three healthy volunteers, one asthmatic, and two chronic obstructive pulmonary disease (COPD) (GOLD stage I and II) subjects were imaged with MXTC MRI. In a subset of subjects, hyperpolarized xenon-129 ADC MRI and CT imaging were also performed. RESULTS: The MXTC-S parameter was found to be elevated in subjects with lung disease (P-value = 0.018). In the MXTC-F parameter map it was feasible to identify regional loss of functional tissue in a COPD patient. MXTC-F maps showed excellent regional correlation with CT and ADC (P ≥ 0.90) in one COPD subject. CONCLUSION: The functional tissue-density parameter MXTC-F showed regional agreement with other imaging techniques. The newly developed parameter MXTC-S, which characterizes the functional thickness of alveolar septa, has potential as a novel biomarker for regional parenchymal inflammation or thickening.


Assuntos
Pneumopatias Obstrutivas/patologia , Pulmão/patologia , Isótopos de Xenônio/química , Adulto , Algoritmos , Meios de Contraste , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Pneumopatias Obstrutivas/diagnóstico , Imageamento por Ressonância Magnética/métodos , Masculino , Informática Médica/métodos , Pessoa de Meia-Idade , Modelos Estatísticos , Software , Fatores de Tempo , Tomografia Computadorizada por Raios X/métodos , Xenônio
18.
Proc Natl Acad Sci U S A ; 107(50): 21707-12, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21098267

RESUMO

Despite a myriad of technical advances in medical imaging, as well as the growing need to address the global impact of pulmonary diseases, such as asthma and chronic obstructive pulmonary disease, on health and quality of life, it remains challenging to obtain in vivo regional depiction and quantification of the most basic physiological functions of the lung-gas delivery to the airspaces and gas uptake by the lung parenchyma and blood-in a manner suitable for routine application in humans. We report a method based on MRI of hyperpolarized xenon-129 that permits simultaneous observation of the 3D distributions of ventilation (gas delivery) and gas uptake, as well as quantification of regional gas uptake based on the associated ventilation. Subjects with lung disease showed variations in gas uptake that differed from those in ventilation in many regions, suggesting that gas uptake as measured by this technique reflects such features as underlying pathological alterations of lung tissue or of local blood flow. Furthermore, the ratio of the signal associated with gas uptake to that associated with ventilation was substantially altered in subjects with lung disease compared with healthy subjects. This MRI-based method provides a way to quantify relationships among gas delivery, exchange, and transport, and appears to have significant potential to provide more insight into lung disease.


Assuntos
Pulmão/fisiologia , Imageamento por Ressonância Magnética/métodos , Ventilação Pulmonar/fisiologia , Respiração , Isótopos de Xenônio/metabolismo , Adulto , Idoso , Feminino , Gases/metabolismo , Humanos , Pneumopatias/fisiopatologia , Masculino , Pessoa de Meia-Idade , Relação Ventilação-Perfusão , Adulto Jovem
19.
Acad Radiol ; 15(6): 683-92, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18486005

RESUMO

RATIONALE AND OBJECTIVES: Hyperpolarized gases such as (129)Xe and (3)He have high potential as imaging agents for functional lung magnetic resonance imaging (MRI). We present new technology offering (129)Xe production rates with order-of-magnitude improvement over existing systems, to liter per hour at 50% polarization. Human lung imaging studies with xenon, initially limited by the modest quantity and quality of hyperpolarized gas available, can now be performed with multiliter quantities several times daily. MATERIALS AND METHODS: The polarizer is a continuous-flow system capable of producing large quantities of highly-polarized (129)Xe through rubidium spin-exchange optical pumping. The low-pressure, high-velocity operating regime takes advantage of the enhancement in the spin exchange rate provided by van der Waals molecules dominating the atomic interactions. The long polarizing column moves the flow of the gas opposite to the laser direction, allowing efficient extraction of the laser light. Separate sections of the system assure full rubidium vapor saturation and removal. RESULTS: The system is capable of producing 64% polarization at 0.3 L/hour Xe production rate. Increasing xenon flow reduces output polarization. Xenon polarization was studied as a function of different system operating parameters. A novel xenon trapping design was demonstrated to allow full recovery of the xenon polarization after the freeze-thaw cycle. Delivery methods of the gas to an offsite MRI facility were demonstrated in both frozen and gas states. CONCLUSIONS: We demonstrated a new concept for producing large quantities of highly polarized xenon. The system is operating in an MRI facility producing liters of hyperpolarized gas for human lung imaging studies.


Assuntos
Pneumopatias/diagnóstico , Imageamento por Ressonância Magnética , Isótopos de Xenônio/química , Desenho de Equipamento , Humanos , Lasers , Óptica e Fotônica
20.
Acad Radiol ; 15(6): 713-27, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18486008

RESUMO

RATIONALE AND OBJECTIVES: Using a novel (129)Xe polarizer with high throughput (1-2 L/hour) and high polarization (approximately 55%), our objective was to demonstrate and characterize human pulmonary applications at 0.2T. Specifically, we investigated the ability of (129)Xe to measure the alveolar surface area per unit volume of gas, S(A)/V(gas). MATERIALS AND METHODS: Variable spin echo time (TE) gradient and radiofrequency (RF) echoes were used to obtain estimates of the lung's contribution to both T(2)* and T(2). Standard multislice ventilation images were obtained and signal-to-noise ratio (SNR) determined. Whole-lung, time-dependent measurements of (129)Xe diffusion from gas to septal tissue were obtained with a chemical shift saturation recovery (CSSR) method. Four healthy subjects were studied, and the Butler et al CSSR formalism (J Phys Condensed Matter 2002; 14:L297-L304) was used to calculate S(A)/V(gas). A single-breath version of the xenon transfer contrast (SB-XTC) method was implemented and used to image (129)Xe diffusion between alveolar gas and septal tissue. A direct comparison of CSSR and SB-XTC was performed. RESULTS: T(2)*=135+/-29 ms amd T(2)=326.2+/-9.5 ms. Maximum SNR=36 for ventilation images from inhalation of 1L 86% (129)Xe and voxel volume =0.225 mL. CSSR analysis showed S(A)/V(gas) decreased with increasing lung volume in a manner very similar to that observed from histology measurements; however, the absolute value of S(A)/V(gas) was approximately 40% smaller than histology values. SB-XTC images in different postures demonstrate gravitationally dependent values. Initial comparison of CSSR with XTC showed fairly good agreement with expected ratios. CONCLUSIONS: Hyperpolarized (129)Xe human imaging and spectroscopy are very promising methods to provide functional information about the lung.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Pulmão/fisiologia , Isótopos de Xenônio , Administração por Inalação , Adulto , Humanos , Aumento da Imagem/métodos , Capacidade de Difusão Pulmonar/fisiologia , Isótopos de Xenônio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...