Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37577713

RESUMO

Multiple sclerosis (MS) is considered an inflammatory and neurodegenerative disease of the central nervous system, typically resulting in significant neurological disability that worsens over time. While considerable progress has been made in defining the immune system's role in MS pathophysiology, the contribution of intrinsic CNS-cell dysfunction remains unclear. Here, we generated the largest reported collection of iPSC lines from people with MS spanning diverse clinical subtypes and differentiated them into glia-enriched cultures. Using single-cell transcriptomic profiling, we observed several distinguishing characteristics of MS cultures pointing to glia-intrinsic disease mechanisms. We found that iPSC-derived cultures from people with primary progressive MS contained fewer oligodendrocytes. Moreover, iPSC-oligodendrocyte lineage cells and astrocytes from people with MS showed increased expression of immune and inflammatory genes that match those of glial cells from MS postmortem brains. Thus, iPSC-derived MS models provide a unique platform for dissecting glial contributions to disease phenotypes independent of the peripheral immune system and identify potential glia-specific targets for therapeutic intervention.

2.
STAR Protoc ; 1(3): 100172, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33377066

RESUMO

Given the critical roles of astrocytes in neuroinflammation and neurological diseases, models for studying human astrocyte biology are in increasing demand. Here, we present a protocol to isolate human astrocytes from induced pluripotent stem cell (iPSC)-based cultures, neural organoids, and primary tissue, using the surface marker CD49f. Moreover, we provide protocols for in vitro co-cultures of human iPSC-derived neurons and astrocytes, as well as for neurotoxicity assays that expose neurons to conditioned media from reactive astrocytes. For complete details on the use and execution of this protocol, please refer to Barbar et al. (2020).


Assuntos
Astrócitos/metabolismo , Bioensaio/métodos , Separação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Integrina alfa6/metabolismo , Neurotoxinas/toxicidade , Testes de Toxicidade , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Citometria de Fluxo , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos
3.
Neuron ; 107(3): 436-453.e12, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32485136

RESUMO

New methods for investigating human astrocytes are urgently needed, given their critical role in the central nervous system. Here we show that CD49f is a novel marker for human astrocytes, expressed in fetal and adult brains from healthy and diseased individuals. CD49f can be used to purify fetal astrocytes and human induced pluripotent stem cell (hiPSC)-derived astrocytes. We provide single-cell and bulk transcriptome analyses of CD49f+ hiPSC-astrocytes and demonstrate that they perform key astrocytic functions in vitro, including trophic support of neurons, glutamate uptake, and phagocytosis. Notably, CD49f+ hiPSC-astrocytes respond to inflammatory stimuli, acquiring an A1-like reactive state, in which they display impaired phagocytosis and glutamate uptake and fail to support neuronal maturation. Most importantly, we show that conditioned medium from human reactive A1-like astrocytes is toxic to human and rodent neurons. CD49f+ hiPSC-astrocytes are thus a valuable resource for investigating human astrocyte function and dysfunction in health and disease.


Assuntos
Astrócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Integrina alfa6/metabolismo , Doença de Alzheimer/metabolismo , Animais , Astrócitos/fisiologia , Biomarcadores/metabolismo , Citometria de Fluxo , Perfilação da Expressão Gênica , Ácido Glutâmico/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/fisiopatologia , Camundongos , Técnicas de Patch-Clamp , Fagocitose/fisiologia , RNA-Seq , Análise de Célula Única
6.
Nat Neurosci ; 19(12): 1743-1749, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27798629

RESUMO

A fundamental impediment to understanding the brain is the availability of inexpensive and robust methods for targeting and manipulating specific neuronal populations. The need to overcome this barrier is pressing because there are considerable anatomical, physiological, cognitive and behavioral differences between mice and higher mammalian species in which it is difficult to specifically target and manipulate genetically defined functional cell types. In particular, it is unclear the degree to which insights from mouse models can shed light on the neural mechanisms that mediate cognitive functions in higher species, including humans. Here we describe a novel recombinant adeno-associated virus that restricts gene expression to GABAergic interneurons within the telencephalon. We demonstrate that the viral expression is specific and robust, allowing for morphological visualization, activity monitoring and functional manipulation of interneurons in both mice and non-genetically tractable species, thus opening the possibility to study GABAergic function in virtually any vertebrate species.


Assuntos
Encéfalo/virologia , Dependovirus/isolamento & purificação , Neurônios GABAérgicos/virologia , Interneurônios/fisiologia , Vertebrados/virologia , Animais , Comportamento Animal , Encéfalo/metabolismo , Células Cultivadas , Dependovirus/genética , Feminino , Neurônios GABAérgicos/patologia , Vetores Genéticos/genética , Camundongos Endogâmicos C57BL
7.
Int J Mol Sci ; 17(4)2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27110779

RESUMO

Pluripotent stem cells provide an invaluable tool for generating human, disease-relevant cells. Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system, characterized by myelin damage. Oligodendrocytes are the myelinating cells of the central nervous system (CNS); they differentiate from progenitor cells, and their membranes ensheath axons, providing trophic support and allowing fast conduction velocity. The current understanding of oligodendrocyte biology was founded by rodent studies, where the establishment of repressive epigenetic marks on histone proteins, followed by activation of myelin genes, leads to lineage progression. To assess whether this epigenetic regulation is conserved across species, we differentiated human embryonic and induced pluripotent stem cells to oligodendrocytes and asked whether similar histone marks and relative enzymatic activities could be detected. The transcriptional levels of enzymes responsible for methylation and acetylation of histone marks were analyzed during oligodendrocyte differentiation, and the post-translational modifications on histones were detected using immunofluorescence. These studies showed that also in human cells, differentiation along the oligodendrocyte lineage is characterized by the acquisition of multiple repressive histone marks, including deacetylation of lysine residues on histone H3 and trimethylation of residues K9 and K27. These data suggest that the epigenetic modulation of oligodendrocyte identity is highly conserved across species.


Assuntos
Diferenciação Celular/genética , Epigênese Genética , Células-Tronco Pluripotentes Induzidas/citologia , Oligodendroglia/metabolismo , Acetilação , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Histonas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Microscopia de Fluorescência , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos , Oligodendroglia/citologia , Fator de Transcrição PAX6/metabolismo , Processamento de Proteína Pós-Traducional
8.
Glia ; 62(4): 580-91, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24470341

RESUMO

The oligodendrocyte (OL), the myelinating cell of the central nervous system, undergoes dramatic changes in the organization of its cytoskeleton as it differentiates from a precursor (oligodendrocyte precursor cells) to a myelin-forming cell. These changes include an increase in its branching cell processes, a phenomenon necessary for OL to myelinate multiple axon segments. We have previously shown that levels and activity of non-muscle myosin II (NMII), a regulator of cytoskeletal contractility, decrease as a function of differentiation and that inhibition of NMII increases branching and myelination of OL in coculture with neurons. We have also found that mixed glial cell cultures derived from NMIIB knockout mice display an increase in mature myelin basic protein-expressing OL compared with wild-type cultures. We have now extended our studies to investigate the role of NMIIB ablation on myelin repair following focal demyelination by lysolecithin. To this end, we generated an oligodendrocyte-specific inducible knockout model using a Plp-driven promoter in combination with a temporally activated CRE-ER fusion protein. Our data indicate that conditional ablation of NMII in adult mouse brain, expedites lesion resolution and remyelination by Plp+ oligodendrocyte-lineage cells when compared with that observed in control brains. Taken together, these data validate the function of NMII as that of a negative regulator of OL myelination in vivo and provide a novel target for promoting myelin repair in conditions such as multiple sclerosis.


Assuntos
Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/fisiopatologia , Regeneração Nervosa/fisiologia , Miosina não Muscular Tipo IIB/deficiência , Animais , Antígenos/metabolismo , Proteínas Relacionadas à Autofagia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Corpo Caloso/patologia , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/genética , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Luminescentes/genética , Lisofosfatidilcolinas , Camundongos , Camundongos Transgênicos , Proteína Básica da Mielina/metabolismo , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Bainha de Mielina/patologia , Proteínas do Tecido Nervoso/metabolismo , Miosina não Muscular Tipo IIB/genética , Fator de Transcrição 2 de Oligodendrócitos , Oligodendroglia/patologia , Proteoglicanas/metabolismo
9.
J Neurosci Res ; 90(8): 1547-56, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22437915

RESUMO

During their development as myelinating cells, oligodendrocyte progenitors (OPC) undergo dramatic changes in the organization of their cytoskeleton. These changes involve an increase in cell branching and in lamella extension, which is important for the ability of oligodendrocytes to myelinate multiple axons in the CNS. We have previously shown that the levels of the actin-associated motor protein nonmuscle myosin II (NMII) decrease as oligodendrocyte differentiate and that inhibition of NMII activity increases branching and myelination, suggesting that NMII is a negative regulator of oligodendrocyte differentiation. In agreement with this interpretation, we have found that overexpression of NMII prevents oligodendrocyte branching and differentiation and that OPC maturation is accelerated in NMII knockout mice as shown by a significant increase in the percentage of mature MBP(+) cells. Although several pathways have been implicated in oligodendrocyte morphogenesis, their specific contribution to the regulation of NMII activity has not been directly examined. We tested the hypothesis that the activity of NMII in OPC is controlled by Fyn kinase via downregulation of RhoA-ROCK-NMII phosphorylation. We found that treatment with PP2 or knockdown of Fyn using siRNA prevents the decrease in myosin phosphorylation normally observed during OPC differentiation and that the inhibition of branching induced by overexpression of constitutively active RhoA can be reversed by treatment with Y27632 or blebbistatin. Taken together, our results demonstrate that Fyn kinase downregulates NMII activity, thus promoting oligodendrocyte morphological differentiation.


Assuntos
Diferenciação Celular/fisiologia , Miosina Tipo II/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Transdução de Sinais/fisiologia , Animais , Citoesqueleto/metabolismo , Regulação para Baixo , Imunofluorescência , Camundongos , Camundongos Knockout , Microscopia Imunoeletrônica , Miosina Tipo II/deficiência , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Fosforilação , Ratos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...