Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(42): 95579-95589, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37553492

RESUMO

Wastewater monitoring has proven to be an important approach to detecting and controlling the development of the SARS-CoV-2 pandemic. Various tests based on reverse transcription real-time PCR (qRT-PCR) have been developed and used for the detection of SARS-CoV-2 in wastewater samples. In this study, we attempted to increase the sensitivity of qRT-PCR by developing a one-step single-tube nested qRT-PCR assay (OSN-qRT-PCR). Two variants were developed, oriented to nucleocapsid phosphoprotein gene (N) and to spike protein gene (S), respectively. The performance of conventional qRT-PCR assays oriented to these genes with two novel OSN-qRT-PCR assays were firstly optimized using wastewater artificially contaminated with two encapsidated RNA mimic systems harboring a portion either N or S gene (ENRM and ESRM, respectively). The assays were coupled to a polyethylene glycol-based RNA precipitation/extraction method and applied to detect SARS-CoV-2 in wastewater samples from four cities in Slovakia. Both novel OSN-qRT-PCR assays demonstrated higher detection rates than the ordinary qRT-PCR counterparts. The virus levels in the analyzed wastewater samples had a high or very high relation with the numbers of clinical cases in the monitored regions. In fact, correlation with a 3-, 4-, or 5-day temporal offset was revealed. The OSN-qRT-PCR assays demonstrated robustness, mainly in samples with low viral loads.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Reação em Cadeia da Polimerase em Tempo Real/métodos , Águas Residuárias , Transcrição Reversa , RNA Viral/genética , Teste para COVID-19
2.
Int J Biol Macromol ; 241: 124456, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37085082

RESUMO

Over the centuries, various types of paper have been produced, each characterized by a different ratio of natural macromolecules, mainly lignin and cellulose. Handmade paper has a higher content of cellulose with respect to the early machine-made paper, where lignin is the other important component. Microorganisms are able to colonize and deteriorate both types. They can release on their surfaces pigments and colorants which produced anesthetic stains. To better understand the microbiota colonizing these stains, 17 samples were analyzed, from both handmade and machine-made paper surfaces, as well as library and archive environments. Combination of microbiological and high-throughput sequencing (HTS) approaches were applied. The culture-dependent methodology comprised: isolation, DNA identification, hydrolytic and paper staining assays. The HTS was performed by MinION platform and for the mycobiome a more suitable bioinformatics analysis pipeline, MetONTIIME based on QIIME2 framework, was applied. The paper model staining assay permitted the direct recognition of colorizing isolates which in combination with sequencing data evidenced a complex microbial community able to stain the two types of paper. Staining abilities were confirmed by frequently isolated and detected fungi as well as newly discovered ones Roussoella euonymi and Achaetomium. We have also evidenced the staining ability of several bacteria.


Assuntos
Celulose , Microbiota , Lignina , Corantes , Coloração e Rotulagem , Fungos/genética
3.
Antioxidants (Basel) ; 12(3)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36979002

RESUMO

The strawberry (Fragaria ananassa) is a nutrient-rich fruit with high content of health-beneficial compounds. However, strawberries are susceptible to mechanical damage and microbiological contamination which can cause changes in fruit sensory properties. These changes consequently effect on ripening and shelf life of the strawberry. In recent years, essential oils (EOs) have been famous for their antimicrobial and antioxidant properties and are promising ecological alternatives to chemical antimicrobial substances. Nowadays, active packaging is one of several techniques developed for slowing down the metabolic processes of fresh fruits. Poly(lactic acid) (PLA) is one of the several polymers suitable for encapsulation EOs, whereas at the same time represent non-toxic, biodegradable, and compostable polymer derived from renewable resources. Suitable packaging prolongs the shelf life of fruit, keeps the products at the highest possible nutrition level, improves quality, and attracts customer attention. In the current study, we encapsulated EOs (lemongrass and oregano) into a PLA and poly(3-hydroxybutyrate) (PHB) packaging film and explored their antimicrobial and antioxidant properties. Moreover, biochemical and quality parameters for strawberry preservation and shelf-life extension were also assessed. Our tested active packaging film with EOs was proven to be useful for postharvest quality maintenance and shelf-life extension of strawberries, with PLA/PHB/ATBC + 5% lemongrass EO being slightly better than PLA/PHB/ATBC + 5% oregano EO.

4.
Molecules ; 28(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36770684

RESUMO

The biocolonization of building materials by microorganisms is one of the main causes of their degradation. Fungi and bacteria products can have an undesirable impact on human health. The protection and disinfection of sandstone and wood materials are of great interest. In this study, we evaluated the protection and disinfection activity of oregano and thyme essential oils encapsulated in poly(ε-caprolactone) nanocapsules (Or-NCs, Th-NCs) against four types of environmental microorganisms: Pleurotus eryngii, Purpureocillium lilacinum (fungal strains), Pseudomonas vancouverensis, and Flavobacterium sp. (bacterial strains). The surfaces of sandstone and whitewood samples were inoculated with these microorganisms before or after applying Or-NCs and Th-NCs. The concentration-dependent effect of Or-NCs and Th-NCs on biofilm viability was determined by the MTT reduction assay. The results showed that Or-NCs and Th-NCs possess effective disinfection and anti-biofilm activity. Diffuse reflectivity measurements revealed no visible color changes of the materials after the application of the nanoencapsulated essential oils.


Assuntos
Nanocápsulas , Óleos Voláteis , Origanum , Thymus (Planta) , Humanos , Óleos Voláteis/farmacologia , Desinfecção , Fungos , Testes de Sensibilidade Microbiana
5.
Int J Hyg Environ Health ; 245: 114017, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35939897

RESUMO

Viral pandemics can be inevitable in the next future. Considering SARS-CoV-2 pandemics as an example, there seems to be a need to develop a surveillance system able to monitor the presence of potential pathogenic agents. The sewage and wastewater environments demonstrated to be suitable targets for such kind of analysis. In addition, it is important to have reliable molecular diagnostic tools and also to develop a robust detection strategy. In this study, an effective sample preparation procedure was selected from four options and combined with a newly developed improved RT-PCR. First, a model viral system was constructed, containing a fragment of the SARS-CoV-2 gene encoding for the Spike protein. The encapsidated S RNA mimic (ESRM) was based on the plum pox virus (PPV) genome with the inserted targeted gene fragment. ESRM was used for seeding wastewater samples in order to evaluate the viral recovery of four different viral RNA concentration/extraction methods. The efficiency of individual approaches was assessed by the use of a quantitative reverse transcription PCR (qRT-PCR) and by a one-step single-tube nested quantitative reverse transcription PCR (OSN-qRT-PCR). For the detection of viruses in wastewater samples with low viral loads, OSN-qRT-PCR assay produced the most satisfactory results and the highest sensitivity.


Assuntos
COVID-19 , Pandemias , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética , Águas Residuárias
6.
Appl Microbiol Biotechnol ; 106(11): 4297-4314, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35596787

RESUMO

The irregular damp dark staining on the stonework of a salt-contaminated twelfth century granite-built chapel is thought to be related to a non-homogeneous distribution of salts and microbial communities. To enhance understanding of the role of microorganisms in the presence of salt and damp stains, we determined the salt content and identified the microbial ecosystem in several paving slabs and inner wall slabs (untreated and previously bio-desalinated) and in the exterior surrounding soil. Soluble salt analysis and culture-dependent approaches combined with archaeal and bacterial 16S rRNA and fungal ITS fragment as well as with the functional genes nirK, dsr, and soxB long-amplicon MinION-based sequencing were performed. State-of-the-art technology was used for microbial identification, providing information about the microbial diversity and phylogenetic groups present and enabling us to gain some insight into the biological cycles occurring in the community key genes involved in the different geomicrobiological cycles. A well-defined relationship between microbial data and soluble salts was identified, suggesting that poorly soluble salts (CaSO4) could fill the pores in the stone and lead to condensation and dissolution of highly soluble salts (Ca(NO3)2 and Mg(NO3)2) in the thin layer of water formed on the stonework. By contrast, no direct relationship between the damp staining and the salt content or related microbiota was established. Further analysis regarding organic matter and recalcitrant elements in the stonework should be carried out. KEY POINTS : • Poorly (CaSO4) and highly (Ca(NO3)2, Mg(NO3)2) soluble salts were detected • Halophilic and mineral weathering microorganisms reveal ecological impacts of salts • Microbial communities involved in nitrate and sulfate cycles were detected.


Assuntos
Bactérias , Microbiota , Bactérias/genética , Filogenia , RNA Ribossômico 16S/genética , Sais , Dióxido de Silício , Solo , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...