Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 186(21): 4496-4513, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37832524

RESUMO

Plant-associated microbiota can extend plant immune system function, improve nutrient acquisition and availability, and alleviate abiotic stresses. Thus, naturally beneficial microbial therapeutics are enticing tools to improve plant productivity. The basic definition of plant microbiota across species and ecosystems, combined with the development of reductionist experimental models and the manipulation of plant phenotypes with microbes, has fueled interest in its translation to agriculture. However, the great majority of microbes exhibiting plant-productivity traits in the lab and greenhouse fail in the field. Therapeutic microbes must reach détente, the establishment of uneasy homeostasis, with the plant immune system, invade heterogeneous pre-established plant-associated communities, and persist in a new and potentially remodeled community. Environmental conditions can alter community structure and thus impact the engraftment of therapeutic microbes. We survey recent breakthroughs, challenges, and opportunities in translating beneficial microbes from the lab to the field.


Assuntos
Microbiota , Plantas , Agricultura , Fenótipo , Plantas/microbiologia , Microbiologia do Solo , Estresse Fisiológico , Ecossistema
2.
Proc Natl Acad Sci U S A ; 120(11): e2220921120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36893276

RESUMO

TIR domains are NAD-degrading enzymes that function during immune signaling in prokaryotes, plants, and animals. In plants, most TIR domains are incorporated into intracellular immune receptors termed TNLs. In Arabidopsis, TIR-derived small molecules bind and activate EDS1 heterodimers, which in turn activate RNLs, a class of cation channel-forming immune receptors. RNL activation drives cytoplasmic Ca2+ influx, transcriptional reprogramming, pathogen resistance, and host cell death. We screened for mutants that suppress an RNL activation mimic allele and identified a TNL, SADR1. Despite being required for the function of an autoactivated RNL, SADR1 is not required for defense signaling triggered by other tested TNLs. SADR1 is required for defense signaling initiated by some transmembrane pattern recognition receptors and contributes to the unbridled spread of cell death in lesion simulating disease 1. Together with RNLs, SADR1 regulates defense gene expression at infection site borders, likely in a non-cell autonomous manner. RNL mutants that cannot sustain this pattern of gene expression are unable to prevent disease spread beyond localized infection sites, suggesting that this pattern corresponds to a pathogen containment mechanism. SADR1 potentiates RNL-driven immune signaling not only through the activation of EDS1 but also partially independently of EDS1. We studied EDS1-independent TIR function using nicotinamide, an NADase inhibitor. Nicotinamide decreased defense induction from transmembrane pattern recognition receptors and decreased calcium influx, pathogen growth restriction, and host cell death following intracellular immune receptor activation. We demonstrate that TIR domains can potentiate calcium influx and defense and are thus broadly required for Arabidopsis immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Cálcio/metabolismo , Receptores Imunológicos/metabolismo , Niacinamida/metabolismo , Imunidade Vegetal/genética , Doenças das Plantas/genética
3.
Cell Host Microbe ; 29(10): 1507-1520.e4, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34610294

RESUMO

Although plant roots encounter a plethora of microorganisms in the surrounding soil, at the rhizosphere, plants exert selective forces on their bacterial colonizers. Unlike immune recognition of pathogenic bacteria, the mechanisms by which beneficial bacteria are selected and how they interact with the plant immune system are not well understood. To better understand this process, we studied the interaction of auxin-producing Bacillus velezensis FZB42 with Arabidopsis roots and found that activation of the plant immune system is necessary for efficient bacterial colonization and auxin secretion. A feedback loop is established in which bacterial colonization triggers an immune reaction and production of reactive oxygen species, which, in turn, stimulate auxin production by the bacteria. Auxin promotes bacterial survival and efficient root colonization, allowing the bacteria to inhibit fungal infection and promote plant health. Thus, a feedback loop between bacteria and the plant immune system promotes the fitness of both partners.


Assuntos
Arabidopsis/imunologia , Ácidos Indolacéticos/metabolismo , Imunidade Vegetal , Raízes de Plantas/microbiologia , Arabidopsis/genética , Arabidopsis/microbiologia , Bacillus/genética , Bacillus/crescimento & desenvolvimento , Bacillus/metabolismo , Interações entre Hospedeiro e Microrganismos , Raízes de Plantas/imunologia , Espécies Reativas de Oxigênio/imunologia , Rizosfera
4.
Nat Commun ; 11(1): 6038, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247131

RESUMO

Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is threatening public health as it spreads worldwide across diverse environments. Its genetic hallmark, the mecA gene, confers resistance to many ß-lactam antibiotics. Here, we show that, in addition, mecA provides a broad selective advantage across diverse chemical environments. Competing fluorescently labelled wild-type and mecA-deleted CA-MRSA USA400 strains across ~57,000 compounds supplemented with subinhibitory levels of the ß-lactam drug cefoxitin, we find that mecA provides a widespread advantage across ß-lactam and non ß-lactam antibiotics, non-antibiotic drugs and even diverse natural and synthetic compounds. This advantage depends on the presence of cefoxitin and is strongly associated with the compounds' physicochemical properties, suggesting that it may be mediated by differential compounds permeability into the cell. Indeed, mecA protects the bacteria against increased cell-envelope permeability under subinhibitory cefoxitin treatment. Our findings suggest that CA-MRSA success might be driven by a cell-envelope mediated selective advantage across diverse chemical compounds.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Staphylococcus aureus Resistente à Meticilina/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Cefoxitina/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Modelos Logísticos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Análise Multivariada , Permeabilidade
5.
Annu Rev Microbiol ; 74: 81-100, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32530732

RESUMO

Methodological advances over the past two decades have propelled plant microbiome research, allowing the field to comprehensively test ideas proposed over a century ago and generate many new hypotheses. Studying the distribution of microbial taxa and genes across plant habitats has revealed the importance of various ecological and evolutionary forces shaping plant microbiota. In particular, selection imposed by plant habitats strongly shapes the diversity and composition of microbiota and leads to microbial adaptation associated with navigating the plant immune system and utilizing plant-derived resources. Reductionist approaches have demonstrated that the interaction between plant immunity and the plant microbiome is, in fact, bidirectional and that plants, microbiota, and the environment shape a complex chemical dialogue that collectively orchestrates the plantmicrobiome. The next stage in plant microbiome research will require the integration of ecological and reductionist approaches to establish a general understanding of the assembly and function in both natural and managed environments.


Assuntos
Bactérias/genética , Ecologia , Microbiota , Plantas/imunologia , Plantas/microbiologia , Adaptação Fisiológica/genética , Adaptação Fisiológica/imunologia , Bactérias/classificação , Bactérias/isolamento & purificação , Evolução Molecular , Filogenia , Fenômenos Fisiológicos Vegetais
6.
Nat Commun ; 11(1): 2029, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332717

RESUMO

Beta-lactamase inhibitors are increasingly used to counteract antibiotic resistance mediated by beta-lactamase enzymes. These inhibitors compete with the beta-lactam antibiotic for the same binding site on the beta-lactamase, thus generating an evolutionary tradeoff: mutations that increase the enzyme's beta-lactamase activity tend to increase also its susceptibility to the inhibitor. Here, we investigate how common and accessible are mutants that escape this adaptive tradeoff. Screening a deep mutant library of the blaampC beta-lactamase gene of Escherichia coli, we identified mutations that allow growth at beta-lactam concentrations far exceeding those inhibiting growth of the wildtype strain, even in the presence of the enzyme inhibitor (avibactam). These escape mutations are rare and drug-specific, and some combinations of avibactam with beta-lactam drugs appear to prevent such escape phenotypes. Our results, showing differential adaptive potential of blaampC to combinations of avibactam and different beta-lactam antibiotics, suggest that it may be possible to identify treatments that are more resilient to evolution of resistance.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/genética , Substituição de Aminoácidos , Antibacterianos/química , Compostos Azabicíclicos/farmacologia , Proteínas de Bactérias/química , Sítios de Ligação/genética , Escherichia coli/efeitos dos fármacos , Evolução Molecular , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mutação , beta-Lactamases/química , beta-Lactamas/farmacologia
7.
PLoS Biol ; 17(3): e3000182, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30925180

RESUMO

In experimental evolution, scientists evolve organisms in the lab, typically by challenging them to new environmental conditions. How best to evolve a desired trait? Should the challenge be applied abruptly, gradually, periodically, sporadically? Should one apply chemical mutagenesis, and do strains with high innate mutation rate evolve faster? What are ideal population sizes of evolving populations? There are endless strategies, beyond those that can be exposed by individual labs. We therefore arranged a community challenge, Evolthon, in which students and scientists from different labs were asked to evolve Escherichia coli or Saccharomyces cerevisiae for an abiotic stress-low temperature. About 30 participants from around the world explored diverse environmental and genetic regimes of evolution. After a period of evolution in each lab, all strains of each species were competed with one another. In yeast, the most successful strategies were those that used mating, underscoring the importance of sex in evolution. In bacteria, the fittest strain used a strategy based on exploration of different mutation rates. Different strategies displayed variable levels of performance and stability across additional challenges and conditions. This study therefore uncovers principles of effective experimental evolutionary regimens and might prove useful also for biotechnological developments of new strains and for understanding natural strategies in evolutionary arms races between species. Evolthon constitutes a model for community-based scientific exploration that encourages creativity and cooperation.


Assuntos
Evolução Biológica , Escherichia coli/metabolismo , Humanos , Modelos Genéticos , Mutação/genética , Saccharomyces cerevisiae/metabolismo , Temperatura
8.
J Immunol ; 191(12): 5822-30, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24244020

RESUMO

T cells integrate cell-specific Ag receptor signaling with shared signals mediated by secreted cytokines, which often involve regulatory feedback loops. IL-2 signaling, for example, reduces the synthesis of IL-2 and increases the synthesis of IL-2Rα-chain, whereas both genes require TCR signaling for their activation. The ways by which T cells dynamically integrate these private and public signals during activation are not well understood. We combined robotics, multiparameter flow cytometry, and real-time quantitative PCR to analyze T cell activation at high temporal resolution over several days. Two distinct temporal phases of T cell activation were evident. First, Ag-dependent signals activated low IL-2Rα and high IL-2 production, independent of IL-2 signaling. Subsequently, secreted IL-2 acted as a shared resource driving high IL-2Rα expression, reduced IL-2 synthesis, and cell proliferation. This transition was independent of continued TCR signaling. Our data allowed the determination of the parameters of the IL-2-mediated extracellular positive and negative feedback circuits and demonstrated that the two loops are coupled and become activated at a similar level of IL-2 signaling. We propose that temporal separation of private and shared signals allows T cells to first integrate Ag-specific responses and subsequently share information leading to collective decision making.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Retroalimentação Fisiológica/fisiologia , Interleucina-2/fisiologia , Ativação Linfocitária/imunologia , Sequência de Aminoácidos , Animais , Apresentação de Antígeno , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo/métodos , Regulação da Expressão Gênica/imunologia , Interleucina-2/biossíntese , Interleucina-2/genética , Interleucina-2/metabolismo , Subunidade alfa de Receptor de Interleucina-2/biossíntese , Subunidade alfa de Receptor de Interleucina-2/genética , Camundongos , Camundongos Endogâmicos C3H , Camundongos Transgênicos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Antígenos de Linfócitos T/imunologia , Robótica , Fatores de Tempo
9.
Mol Cell ; 49(2): 322-30, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23219532

RESUMO

Processing of external information by mammalian cells often involves seemingly redundant isoforms of signaling molecules and transcription factors. Understanding the functional relevance of coexpressed isoforms that respond to the same signal and control a shared set of genes is still limited. Here we show, using imaging of individual living mammalian cells, that the closely related transcription factors NFAT1 and NFAT4 possess distinct nuclear localization dynamics in response to cell stimulation. NFAT4 shows a fast response, with rapid stochastic bursts of nuclear localization. Burst frequency grows with signal level, while response amplitude is fixed. In contrast, NFAT1 has a slow, continuous response, and its amplitude increases with signal level. These diverse dynamical features observed for single cells are translated into different impulse response strategies at the cell population level. We suggest that dynamic response diversity of seemingly redundant genes can provide cells with enhanced capabilities of temporal information processing.


Assuntos
Núcleo Celular/metabolismo , Fatores de Transcrição NFATC/metabolismo , Animais , Cálcio/fisiologia , Linhagem Celular , Proteínas de Drosophila/imunologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Imunoglobulina E/fisiologia , Camundongos , Proteínas Associadas aos Microtúbulos/imunologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Isoformas de Proteínas/metabolismo , Transporte Proteico , Ratos , Análise de Célula Única , Imagem com Lapso de Tempo
10.
Plant J ; 68(4): 571-82, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21771122

RESUMO

Elaboration of a compound leaf shape depends on extended morphogenetic activity in developing leaves. In tomato (Solanum lycopersicum), the CIN-TCP transcription factor LANCEOLATE (LA) promotes leaf differentiation. LA is negatively regulated by miR319 during the early stages of leaf development, and decreased sensitivity of LA mRNA to miR319 recognition in the semi-dominant mutant La leads to prematurely increased LA expression, precocious leaf differentiation and a simpler and smaller leaf. Increased levels or responses of the plant hormone gibberellin (GA) in tomato leaves also led to a simplified leaf form. Here, we show that LA activity is mediated in part by GA. Expression of the SlGA20 oxidase1 (SlGA20ox1) gene, which encodes an enzyme in the GA biosynthesis pathway, is increased in gain-of-function La mutants and reduced in plants that over-express miR319. Conversely, the transcript levels of the GA deactivation gene SlGA2 oxidase4 (SlGA2ox4) are increased in plants over-expressing miR319. The miR319 over-expression phenotype is suppressed by exogenous GA application and by a mutation in the PROCERA (PRO) gene, which encodes an inhibitor of the GA response. SlGA2ox4 is expressed in initiating leaflets during early leaf development. Its expression expands as a result of miR319 over-expression, and its over-expression leads to increased leaf complexity. These results suggest that LA activity is partly mediated by positive regulation of the GA response, probably by regulation of GA levels.


Assuntos
Giberelinas/farmacologia , MicroRNAs/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , MicroRNAs/genética , Mutação , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...