Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(6): 3199-3212, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38407436

RESUMO

Productive infections by RNA viruses require faithful replication of the entire genome. Yet many RNA viruses also produce deletion-containing viral genomes (DelVGs), aberrant replication products with large internal deletions. DelVGs interfere with the replication of wild-type virus and their presence in patients is associated with better clinical outcomes. The DelVG RNA itself is hypothesized to confer this interfering activity. DelVGs antagonize replication by out-competing the full-length genome and triggering innate immune responses. Here, we identify an additionally inhibitory mechanism mediated by a new class of viral proteins encoded by DelVGs. We identified hundreds of cryptic viral proteins translated from DelVGs. These DelVG-encoded proteins (DPRs) include canonical viral proteins with large internal deletions, as well as proteins with novel C-termini translated from alternative reading frames. Many DPRs retain functional domains shared with their full-length counterparts, suggesting they may have activity during infection. Mechanistic studies of DPRs derived from the influenza virus protein PB2 showed that they poison replication of wild-type virus by acting as dominant-negative inhibitors of the viral polymerase. These findings reveal that DelVGs have a dual inhibitory mechanism, acting at both the RNA and protein level. They further show that DPRs have the potential to dramatically expand the functional proteomes of diverse RNA viruses.


Assuntos
Genoma Viral , Vírus da Influenza A , Proteoma , Proteínas Virais , Humanos , Genoma Viral/genética , Vírus da Influenza A/genética , Proteoma/genética , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/genética , Deleção de Sequência/genética , Animais , Cães , Linhagem Celular
2.
PLoS Pathog ; 20(1): e1011898, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38236826

RESUMO

The outcome of viral infection depends on the diversity of the infecting viral population and the heterogeneity of the cell population that is infected. Until almost a decade ago, the study of these dynamic processes during viral infection was challenging and limited to certain targeted measurements. Presently, with the use of single-cell sequencing technology, the complex interface defined by the interactions of cells with infecting virus can now be studied across the breadth of the transcriptome in thousands of individual cells simultaneously. In this review, we will describe the use of single-cell RNA sequencing (scRNA-seq) to study the heterogeneity of viral infections, ranging from individual virions to the immune response between infected individuals. In addition, we highlight certain key experimental limitations and methodological decisions that are critical to analyzing scRNA-seq data at each scale.


Assuntos
Análise da Expressão Gênica de Célula Única , Viroses , Humanos , Análise de Sequência de RNA , Interações entre Hospedeiro e Microrganismos , Transcriptoma , Análise de Célula Única , Perfilação da Expressão Gênica
3.
bioRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38168266

RESUMO

Productive infections by RNA viruses require faithful replication of the entire genome. Yet many RNA viruses also produce deletion-containing viral genomes (DelVGs), aberrant replication products with large internal deletions. DelVGs interfere with the replication of wild-type virus and their presence in patients is associated with better clinical outcomes as they. The DelVG RNA itself is hypothesized to confer this interfering activity. DelVGs antagonize replication by out-competing the full-length genome and triggering innate immune responses. Here, we identify an additionally inhibitory mechanism mediated by a new class of viral proteins encoded by DelVGs. We identified hundreds of cryptic viral proteins translated from DelVGs. These DelVG-encoded proteins (DPRs) include canonical viral proteins with large internal deletions, as well as proteins with novel C-termini translated from alternative reading frames. Many DPRs retain functional domains shared with their full-length counterparts, suggesting they may have activity during infection. Mechanistic studies of DPRs derived from the influenza virus protein PB2 showed that they poison replication of wild-type virus by acting as dominant-negative inhibitors of the viral polymerase. These findings reveal that DelVGs have a dual inhibitory mechanism, acting at both the RNA and protein level. They further show that DPRs have the potential to dramatically expand the functional proteomes of diverse RNA viruses.

4.
Bioessays ; 45(11): e2300097, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37667453

RESUMO

Although the type-I interferon (IFN-I) response is considered vertebrate-specific, recent findings about the Intracellular Pathogen Response (IPR) in nematode Caenorhabditis elegans indicate that there are similarities between these two transcriptional immunological programs. The IPR is induced during infection with natural intracellular fungal and viral pathogens of the intestine and promotes resistance against these pathogens. Similarly, the IFN-I response is induced by viruses and other intracellular pathogens and promotes resistance against infection. Whether the IPR and the IFN-I response evolved in a divergent or convergent manner is an unanswered and exciting question, which could be addressed by further studies of immunity against intracellular pathogens in C. elegans and other simple host organisms. Here we highlight similar roles played by RIG-I-like receptors, purine metabolism enzymes, proteotoxic stressors, and transcription factors to induce the IPR and IFN-I response, as well as the similar consequences of these defense programs on organismal development.


Assuntos
Proteínas de Caenorhabditis elegans , Interferon Tipo I , Nematoides , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Interferon Tipo I/metabolismo , Mamíferos/metabolismo
5.
PLoS Pathog ; 19(4): e1010943, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37068114

RESUMO

Influenza A virus exhibits high rates of replicative failure due to a variety of genetic defects. Most influenza virions cannot, when acting as individual particles, complete the entire viral life cycle. Nevertheless influenza is incredibly successful in the suppression of innate immune detection and the production of interferons, remaining undetected in >99% of cells in tissue-culture models of infection. Notably, the same variation that leads to replication failure can, by chance, inactivate the major innate immune antagonist in influenza A virus, NS1. What explains the observed rarity of interferon production in spite of the frequent loss of this, critical, antagonist? By studying how genetic and phenotypic variation in a viral population lacking NS1 correlates with interferon production, we have built a model of the "worst-case" failure from an improved understanding of the steps at which NS1 acts in the viral life cycle to prevent the triggering of an innate immune response. In doing so, we find that NS1 prevents the detection of de novo innate immune ligands, defective viral genomes, and viral export from the nucleus, although only generation of de novo ligands appears absolutely required for enhanced detection of virus in the absence of NS1. Due to this, the highest frequency of interferon production we observe (97% of infected cells) requires a high level of replication in the presence of defective viral genomes with NS1 bearing an inactivating mutation that does not impact its partner encoded on the same segment, NEP. This is incredibly unlikely to occur given the standard variation found within a viral population, and would generally require direct, artificial, intervention to achieve at an appreciable rate. Thus from our study, we procure at least a partial explanation for the seeming contradiction between high rates of replicative failure and the rarity of the interferon response to influenza infection.


Assuntos
Vírus da Influenza A , Influenza Humana , Humanos , Interferons/genética , Influenza Humana/genética , Proteínas não Estruturais Virais/genética , Vírus da Influenza A/genética , Imunidade Inata , Replicação Viral/genética
6.
Ann N Y Acad Sci ; 1522(1): 60-73, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36722473

RESUMO

Respiratory viruses are a common cause of morbidity and mortality around the world. Viruses like influenza, RSV, and most recently SARS-CoV-2 can rapidly spread through a population, causing acute infection and, in vulnerable populations, severe or chronic disease. Developing effective treatment and prevention strategies often becomes a race against ever-evolving viruses that develop resistance, leaving therapy efficacy either short-lived or relevant for specific viral strains. On June 29 to July 2, 2022, researchers met for the Keystone symposium "Respiratory Viruses: New Frontiers." Researchers presented new insights into viral biology and virus-host interactions to understand the mechanisms of disease and identify novel treatment and prevention approaches that are effective, durable, and broad.


Assuntos
COVID-19 , Influenza Humana , Infecções por Vírus Respiratório Sincicial , Humanos , COVID-19/patologia , COVID-19/virologia , Interações entre Hospedeiro e Microrganismos , Influenza Humana/patologia , Influenza Humana/virologia , Infecções por Vírus Respiratório Sincicial/patologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios , SARS-CoV-2
7.
J Virol ; 96(14): e0050522, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35867557

RESUMO

Influenza virus infections are thought to be initiated in a small number of cells; however, the heterogeneity across the cellular responses of the epithelial cells during establishment of disease is incompletely understood. Here, we used an H1N1 influenza virus encoding a fluorescent reporter gene, a cell lineage-labeling transgenic mouse line, and single-cell RNA sequencing to explore the range of responses in a susceptible epithelial cell population during an acute influenza A virus (IAV) infection. Focusing on multiciliated cells, we identified a subpopulation that basally expresses interferon-stimulated genes (ISGs), which we hypothesize may be important for the early response to infection. We subsequently found that a population of infected ciliated cells produce most of the ciliated cell-derived inflammatory cytokines, and nearly all bystander ciliated cells induce a broadly antiviral state. From these data together, we propose that variable preexisting gene expression patterns in the initial cells targeted by the virus may ultimately affect the establishment of viral disease. IMPORTANCE Influenza A virus poses a significant threat to public health, and each year, millions of people in the United States alone are exposed to the virus. We do not currently, however, fully understand why some individuals clear the infection asymptomatically and others become severely ill. Understanding how these divergent phenotypes arise could eventually be leveraged to design therapeutics that prevent severe disease. As a first step toward understanding these different infection states, we used a technology that allowed us to determine how thousands of individual murine lung epithelial cells behaved before and during IAV infection. We found that small subsets of epithelial cells exhibited an antiviral state prior to infection, and similarly, some cells made high levels of inflammatory cytokines during infection. We propose that different ratios of these individual cellular responses may contribute to the broader antiviral state of the lung and may ultimately affect disease severity.


Assuntos
Células Epiteliais , Vírus da Influenza A Subtipo H1N1 , Infecções por Orthomyxoviridae , Animais , Cílios , Citocinas/metabolismo , Células Epiteliais/virologia , Humanos , Influenza Humana , Pulmão/citologia , Pulmão/virologia , Camundongos , Infecções por Orthomyxoviridae/patologia
8.
Elife ; 112022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35762582

RESUMO

Members of the bacterial T6SS amidase effector (Tae) superfamily of toxins are delivered between competing bacteria to degrade cell wall peptidoglycan. Although Taes share a common substrate, they exhibit distinct antimicrobial potency across different competitor species. To investigate the molecular basis governing these differences, we quantitatively defined the functional determinants of Tae1 from Pseudomonas aeruginosa PAO1 using a combination of nuclear magnetic resonance and a high-throughput in vivo genetic approach called deep mutational scanning (DMS). As expected, combined analyses confirmed the role of critical residues near the Tae1 catalytic center. Unexpectedly, DMS revealed substantial contributions to enzymatic activity from a much larger, ring-like functional hot spot extending around the entire circumference of the enzyme. Comparative DMS across distinct growth conditions highlighted how functional contribution of different surfaces is highly context-dependent, varying alongside composition of targeted cell walls. These observations suggest that Tae1 engages with the intact cell wall network through a more distributed three-dimensional interaction interface than previously appreciated, providing an explanation for observed differences in antimicrobial potency across divergent Gram-negative competitors. Further binding studies of several Tae1 variants with their cognate immunity protein demonstrate that requirements to maintain protection from Tae activity may be a significant constraint on the mutational landscape of tae1 toxicity in the wild. In total, our work reveals that Tae diversification has likely been shaped by multiple independent pressures to maintain interactions with binding partners that vary across bacterial species and conditions.


Assuntos
Amidoidrolases , Peptidoglicano , Amidoidrolases/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Peptidoglicano/metabolismo , Pseudomonas aeruginosa/metabolismo
9.
PLoS Pathog ; 17(12): e1010125, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34882752

RESUMO

Found in a diverse set of viral populations, defective interfering particles are parasitic variants that are unable to replicate on their own yet rise to relatively high frequencies. Their presence is associated with a loss of population fitness, both through the depletion of key cellular resources and the stimulation of innate immunity. For influenza A virus, these particles contain large internal deletions in the genomic segments which encode components of the heterotrimeric polymerase. Using a library-based approach, we comprehensively profile the growth and replication of defective influenza species, demonstrating that they possess an advantage during genome replication, and that exclusion during population expansion reshapes population composition in a manner consistent with their final, observed, distribution in natural populations. We find that an innate immune response is not linked to the size of a deletion; however, replication of defective segments can enhance their immunostimulatory properties. Overall, our results address several key questions in defective influenza A virus biology, and the methods we have developed to answer those questions may be broadly applied to other defective viruses.


Assuntos
Vírus Defeituosos/genética , Aptidão Genética/genética , Vírus da Influenza A/genética , Animais , Linhagem Celular , Genoma Viral , Humanos
10.
Cell ; 181(7): 1450-1451, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32589954

RESUMO

Some negative-sense RNA viruses prime mRNA transcription using host 5' cap sequences, usurping host translational machinery and evading antiviral surveillance. In this issue of Cell, Ho et al. identify an additional consequence of this viral strategy: the acquisition of upstream start codons from host-derived sequences and subsequent translation of novel viral products.


Assuntos
Capuzes de RNA , Proteínas Virais , Humanos , RNA Mensageiro , RNA Viral/genética , Proteínas Recombinantes de Fusão , Proteínas Virais/genética
11.
J Virol ; 93(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31068418

RESUMO

Influenza virus-infected cells vary widely in their expression of viral genes and only occasionally activate innate immunity. Here, we develop a new method to assess how the genetic variation in viral populations contributes to this heterogeneity. We do this by determining the transcriptome and full-length sequences of all viral genes in single cells infected with a nominally "pure" stock of influenza virus. Most cells are infected by virions with defects, some of which increase the frequency of innate-immune activation. These immunostimulatory defects are diverse and include mutations that perturb the function of the viral polymerase protein PB1, large internal deletions in viral genes, and failure to express the virus's interferon antagonist NS1. However, immune activation remains stochastic in cells infected by virions with these defects and occasionally is triggered even by virions that express unmutated copies of all genes. Our work shows that the diverse spectrum of defects in influenza virus populations contributes to-but does not completely explain-the heterogeneity in viral gene expression and immune activation in single infected cells.IMPORTANCE Because influenza virus has a high mutation rate, many cells are infected by mutated virions. But so far, it has been impossible to fully characterize the sequence of the virion infecting any given cell, since conventional techniques such as flow cytometry and single-cell transcriptome sequencing (scRNA-seq) only detect if a protein or transcript is present, not its sequence. Here we develop a new approach that uses long-read PacBio sequencing to determine the sequences of virions infecting single cells. We show that viral genetic variation explains some but not all of the cell-to-cell variability in viral gene expression and innate immune induction. Overall, our study provides the first complete picture of how viral mutations affect the course of infection in single cells.


Assuntos
Variação Genética , Imunidade Inata , Vírus da Influenza A Subtipo H1N1 , Análise de Sequência de RNA , Análise de Célula Única , Proteínas não Estruturais Virais , Células A549 , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia
12.
Elife ; 72018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29451492

RESUMO

Viral infection can dramatically alter a cell's transcriptome. However, these changes have mostly been studied by bulk measurements on many cells. Here we use single-cell mRNA sequencing to examine the transcriptional consequences of influenza virus infection. We find extremely wide cell-to-cell variation in the productivity of viral transcription - viral transcripts comprise less than a percent of total mRNA in many infected cells, but a few cells derive over half their mRNA from virus. Some infected cells fail to express at least one viral gene, but this gene absence only partially explains variation in viral transcriptional load. Despite variation in viral load, the relative abundances of viral mRNAs are fairly consistent across infected cells. Activation of innate immune pathways is rare, but some cellular genes co-vary in abundance with the amount of viral mRNA. Overall, our results highlight the complexity of viral infection at the level of single cells.


Assuntos
Orthomyxoviridae/crescimento & desenvolvimento , RNA Mensageiro/análise , RNA Viral/análise , Análise de Célula Única , Células A549 , Animais , Cães , Perfilação da Expressão Gênica , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Células Madin Darby de Rim Canino , Análise de Sequência de RNA , Transcrição Gênica , Carga Viral
13.
Proc Natl Acad Sci U S A ; 113(13): 3639-44, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26957597

RESUMO

The human gut microbiome is a dynamic and densely populated microbial community that can provide important benefits to its host. Cooperation and competition for nutrients among its constituents only partially explain community composition and interpersonal variation. Notably, certain human-associated Bacteroidetes--one of two major phyla in the gut--also encode machinery for contact-dependent interbacterial antagonism, but its impact within gut microbial communities remains unknown. Here we report that prominent human gut symbionts persist in the gut through continuous attack on their immediate neighbors. Our analysis of just one of the hundreds of species in these communities reveals 12 candidate antibacterial effector loci that can exist in 32 combinations. Through the use of secretome studies, in vitro bacterial interaction assays and multiple mouse models, we uncover strain-specific effector/immunity repertoires that can predict interbacterial interactions in vitro and in vivo, and find that some of these strains avoid contact-dependent killing by accumulating immunity genes to effectors that they do not encode. Effector transmission rates in live animals can exceed 1 billion events per minute per gram of colonic contents, and multiphylum communities of human gut commensals can partially protect sensitive strains from these attacks. Together, these results suggest that gut microbes can determine their interactions through direct contact. An understanding of the strategies human gut symbionts have evolved to target other members of this community may provide new approaches for microbiome manipulation.


Assuntos
Microbioma Gastrointestinal/fisiologia , Animais , Bacteroides fragilis/genética , Bacteroides fragilis/imunologia , Bacteroides fragilis/fisiologia , Feminino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/imunologia , Genoma Bacteriano , Vida Livre de Germes , Humanos , Masculino , Camundongos , Modelos Animais , Filogenia , Simbiose/genética , Simbiose/imunologia , Simbiose/fisiologia , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/imunologia , Sistemas de Secreção Tipo VI/fisiologia
14.
Elife ; 42015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25643398

RESUMO

The perception and response to cellular death is an important aspect of multicellular eukaryotic life. For example, damage-associated molecular patterns activate an inflammatory cascade that leads to removal of cellular debris and promotion of healing. We demonstrate that lysis of Pseudomonas aeruginosa cells triggers a program in the remaining population that confers fitness in interspecies co-culture. We find that this program, termed P. aeruginosa response to antagonism (PARA), involves rapid deployment of antibacterial factors and is mediated by the Gac/Rsm global regulatory pathway. Type VI secretion, and, unexpectedly, conjugative type IV secretion within competing bacteria, induce P. aeruginosa lysis and activate PARA, thus providing a mechanism for the enhanced capacity of P. aeruginosa to target bacteria that elaborate these factors. Our finding that bacteria sense damaged kin and respond via a widely distributed pathway to mount a complex response raises the possibility that danger sensing is an evolutionarily conserved process.


Assuntos
Pseudomonas aeruginosa/patogenicidade , Antibacterianos
15.
Cell Host Microbe ; 16(2): 227-236, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25070807

RESUMO

Bacteroidetes are a phylum of Gram-negative bacteria abundant in mammalian-associated polymicrobial communities, where they impact digestion, immunity, and resistance to infection. Despite the extensive competition at high cell density that occurs in these settings, cell contact-dependent mechanisms of interbacterial antagonism, such as the type VI secretion system (T6SS), have not been defined in this group of organisms. Herein we report the bioinformatic and functional characterization of a T6SS-like pathway in diverse Bacteroidetes. Using prominent human gut commensal and soil-associated species, we demonstrate that these systems localize dynamically within the cell, export antibacterial proteins, and target competitor bacteria. The Bacteroidetes system is a distinct pathway with marked differences in gene content and high evolutionary divergence from the canonical T6S pathway. Our findings offer a potential molecular explanation for the abundance of Bacteroidetes in polymicrobial environments, the observed stability of Bacteroidetes in healthy humans, and the barrier presented by the microbiota against pathogens.


Assuntos
Antibiose , Sistemas de Secreção Bacterianos , Flavobacterium/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Genes Bacterianos , Família Multigênica , Filogenia
16.
Mol Microbiol ; 92(3): 529-42, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24589350

RESUMO

Bacterial secretion systems often employ molecular chaperones to recognize and facilitate export of their substrates. Recent work demonstrated that a secreted component of the type VI secretion system (T6SS), haemolysin co-regulated protein (Hcp), binds directly to effectors, enhancing their stability in the bacterial cytoplasm. Herein, we describe a quantitative cellular proteomics screen for T6S substrates that exploits this chaperone-like quality of Hcp. Application of this approach to the Hcp secretion island I-encoded T6SS (H1-T6SS) of Pseudomonas aeruginosa led to the identification of a novel effector protein, termed Tse4 (type VI secretion exported 4), subsequently shown to act as a potent intra-specific H1-T6SS-delivered antibacterial toxin. Interestingly, our screen failed to identify two predicted H1-T6SS effectors, Tse5 and Tse6, which differ from Hcp-stabilized substrates by the presence of toxin-associated PAAR-repeat motifs and genetic linkage to members of the valine-glycine repeat protein G (vgrG) genes. Genetic studies further distinguished these two groups of effectors: Hcp-stabilized effectors were found to display redundancy in interbacterial competition with respect to the requirement for the two H1-T6SS-exported VgrG proteins, whereas Tse5 and Tse6 delivery strictly required a cognate VgrG. Together, we propose that interaction with either VgrG or Hcp defines distinct pathways for T6S effector export.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Chaperonas Moleculares/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Transporte Proteico
17.
Nat Rev Microbiol ; 12(2): 137-48, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24384601

RESUMO

The type VI secretion system (T6SS) mediates interactions between a broad range of Gram-negative bacterial species. Recent studies have led to a substantial increase in the number of characterized T6SS effector proteins and a more complete and nuanced view of the adaptive importance of the system. Although the T6SS is most often implicated in antagonism, in this Review, we consider the case for its involvement in both antagonistic and non-antagonistic behaviours. Clarifying the roles that type VI secretion has in microbial communities will contribute to broader efforts to understand the importance of microbial interactions in maintaining human and environmental health, and will inform efforts to manipulate these interactions for therapeutic or environmental benefit.


Assuntos
Sistemas de Secreção Bacterianos , Bactérias Gram-Negativas/fisiologia , Interações Microbianas , Proteínas de Bactérias/metabolismo , Humanos , Fatores de Virulência/metabolismo
18.
J Biol Chem ; 288(37): 26616-24, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23878199

RESUMO

Bacteria employ type VI secretion systems (T6SSs) to facilitate interactions with prokaryotic and eukaryotic cells. Despite the widespread identification of T6SSs among Gram-negative bacteria, the number of experimentally validated substrate effector proteins mediating these interactions remains small. Here, employing an informatics approach, we define novel families of T6S peptidoglycan glycoside hydrolase effectors. Consistent with the known intercellular self-intoxication exhibited by the T6S pathway, we observe that each effector gene is located adjacent to a hypothetical open reading frame encoding a putative periplasmically localized immunity determinant. To validate our sequence-based approach, we functionally investigate a representative family member from the soil-dwelling bacterium Pseudomonas protegens. We demonstrate that this protein is secreted in a T6SS-dependent manner and that it confers a fitness advantage in growth competition assays with Pseudomonas putida. In addition, we determined the 1.4 Å x-ray crystal structure of this effector in complex with its cognate immunity protein. The structure reveals the effector shares highest overall structural similarity to a glycoside hydrolase family associated with peptidoglycan N-acetylglucosaminidase activity, suggesting that T6S peptidoglycan glycoside hydrolase effector families may comprise significant enzymatic diversity. Our structural analyses also demonstrate that self-intoxication is prevented by the immunity protein through direct occlusion of the effector active site. This work significantly expands our current understanding of T6S effector diversity.


Assuntos
Sistemas de Secreção Bacterianos/fisiologia , N-Acetil-Muramil-L-Alanina Amidase/química , Calorimetria , Domínio Catalítico , Biologia Computacional , Cristalografia por Raios X , Escherichia coli/metabolismo , Microscopia de Contraste de Fase , Muramidase/química , Peptidoglicano/química , Conformação Proteica , Dobramento de Proteína , Pseudomonas/metabolismo , Pseudomonas putida/metabolismo
19.
Nature ; 496(7446): 508-12, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23552891

RESUMO

Membranes allow the compartmentalization of biochemical processes and are therefore fundamental to life. The conservation of the cellular membrane, combined with its accessibility to secreted proteins, has made it a common target of factors mediating antagonistic interactions between diverse organisms. Here we report the discovery of a diverse superfamily of bacterial phospholipase enzymes. Within this superfamily, we defined enzymes with phospholipase A1 and A2 activity, which are common in host-cell-targeting bacterial toxins and the venoms of certain insects and reptiles. However, we find that the fundamental role of the superfamily is to mediate antagonistic bacterial interactions as effectors of the type VI secretion system (T6SS) translocation apparatus; accordingly, we name these proteins type VI lipase effectors. Our analyses indicate that PldA of Pseudomonas aeruginosa, a eukaryotic-like phospholipase D, is a member of the type VI lipase effector superfamily and the founding substrate of the haemolysin co-regulated protein secretion island II T6SS (H2-T6SS). Although previous studies have specifically implicated PldA and the H2-T6SS in pathogenesis, we uncovered a specific role for the effector and its secretory machinery in intra- and interspecies bacterial interactions. Furthermore, we find that this effector achieves its antibacterial activity by degrading phosphatidylethanolamine, the major component of bacterial membranes. The surprising finding that virulence-associated phospholipases can serve as specific antibacterial effectors suggests that interbacterial interactions are a relevant factor driving the continuing evolution of pathogenesis.


Assuntos
Antibacterianos/metabolismo , Antibiose , Sistemas de Secreção Bacterianos , Fosfolipase D/metabolismo , Pseudomonas aeruginosa/enzimologia , Membrana Celular/química , Membrana Celular/metabolismo , Evolução Molecular , Fosfatidiletanolaminas/metabolismo , Fosfolipase D/química , Fosfolipase D/classificação , Filogenia , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Especificidade da Espécie , Especificidade por Substrato , Fatores de Virulência/química , Fatores de Virulência/metabolismo
20.
J Bacteriol ; 195(2): 287-96, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23144243

RESUMO

Pseudomonas syringae pv. tomato DC3000 produces the phytotoxin coronatine, a major determinant of the leaf chlorosis associated with DC3000 pathogenesis. The DC3000 PSPTO4723 (cmaL) gene is located in a genomic region encoding type III effectors; however, it promotes chlorosis in the model plant Nicotiana benthamiana in a manner independent of type III secretion. Coronatine is produced by the ligation of two moieties, coronafacic acid (CFA) and coronamic acid (CMA), which are produced by biosynthetic pathways encoded in separate operons. Cross-feeding experiments, performed in N. benthamiana with cfa, cma, and cmaL mutants, implicate CmaL in CMA production. Furthermore, analysis of bacterial supernatants under coronatine-inducing conditions revealed that mutants lacking either the cma operon or cmaL accumulate CFA rather than coronatine, supporting a role for CmaL in the regulation or biosynthesis of CMA. CmaL does not appear to regulate CMA production, since the expression of proteins with known roles in CMA production is unaltered in cmaL mutants. Rather, CmaL is needed for the first step in CMA synthesis, as evidenced by the fact that wild-type levels of coronatine production are restored to a ΔcmaL mutant when it is supplemented with 50 µg/ml l-allo-isoleucine, the starting unit for CMA production. cmaL is found in all other sequenced P. syringae strains with coronatine biosynthesis genes. This characterization of CmaL identifies a critical missing factor in coronatine production and provides a foundation for further investigation of a member of the widespread DUF1330 protein family.


Assuntos
Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Indenos/metabolismo , Isoleucina/metabolismo , Pseudomonas syringae/enzimologia , Deleção de Genes , Redes e Vias Metabólicas/genética , Doenças das Plantas/microbiologia , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo , Nicotiana/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...