Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 186(13): 2765-2782.e28, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37327786

RESUMO

Cancer is characterized by hypomethylation-associated silencing of large chromatin domains, whose contribution to tumorigenesis is uncertain. Through high-resolution genome-wide single-cell DNA methylation sequencing, we identify 40 core domains that are uniformly hypomethylated from the earliest detectable stages of prostate malignancy through metastatic circulating tumor cells (CTCs). Nested among these repressive domains are smaller loci with preserved methylation that escape silencing and are enriched for cell proliferation genes. Transcriptionally silenced genes within the core hypomethylated domains are enriched for immune-related genes; prominent among these is a single gene cluster harboring all five CD1 genes that present lipid antigens to NKT cells and four IFI16-related interferon-inducible genes implicated in innate immunity. The re-expression of CD1 or IFI16 murine orthologs in immuno-competent mice abrogates tumorigenesis, accompanied by the activation of anti-tumor immunity. Thus, early epigenetic changes may shape tumorigenesis, targeting co-located genes within defined chromosomal loci. Hypomethylation domains are detectable in blood specimens enriched for CTCs.


Assuntos
Metilação de DNA , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Carcinogênese/genética , DNA , Epigênese Genética , Neoplasias da Próstata/genética , Células Neoplásicas Circulantes
2.
NPJ Precis Oncol ; 7(1): 25, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864091

RESUMO

Immune checkpoint blockade (ICB) has demonstrated efficacy in patients with melanoma, but many exhibit poor responses. Using single cell RNA sequencing of melanoma patient-derived circulating tumor cells (CTCs) and functional characterization using mouse melanoma models, we show that the KEAP1/NRF2 pathway modulates sensitivity to ICB, independently of tumorigenesis. The NRF2 negative regulator, KEAP1, shows intrinsic variation in expression, leading to tumor heterogeneity and subclonal resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...