Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Clin Cancer Res ; 29(5): 888-898, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36342102

RESUMO

PURPOSE: This phase 1 study (NCT03440437) evaluated the safety, tolerability, pharmacokinetics (PK), and activity of FS118, a bispecific antibody-targeting LAG-3 and PD-L1, in patients with advanced cancer resistant to anti-PD-(L)1 therapy. PATIENTS AND METHODS: Patients with solid tumors, refractory to anti-PD-(L)1-based therapy, received intravenous FS118 weekly with an accelerated dose titration design (800 µg to 0.3 mg/kg) followed by 3+3 ascending dose expansion (1 to 20 mg/kg). Primary objectives were safety, tolerability, and PK. Additional endpoints included antitumor activity, immunogenicity, and pharmacodynamics. RESULTS: Forty-three patients with a median of three prior regimens in the locally advanced/metastatic setting, including at least one anti-PD-(L)1 regimen, received FS118 monotherapy. FS118 was well tolerated, with no serious adverse events relating to FS118 reported. No dose-limiting toxicities (DLT) were observed, and an MTD was not reached. The recommended phase 2 dose of FS118 was established as 10 mg/kg weekly. The terminal half-life was 3.9 days. Immunogenicity was transient. Pharmacodynamic activity was prolonged throughout dosing as demonstrated by sustained elevation of soluble LAG-3 and increased peripheral effector cells. The overall disease control rate (DCR) was 46.5%; this disease control was observed as stable disease, except for one late partial response. Disease control of 54.8% was observed in patients receiving 1 mg/kg or greater who had acquired resistance to PD-(L)1-targeted therapy. CONCLUSIONS: FS118 was well tolerated with no DLTs observed up to and including 20 mg/kg QW. Further studies are warranted to determine clinical benefit in patients who have become refractory to anti-PD-(L)1 therapy. See related commentary by Karapetyan and Luke, p. 835.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos , Neoplasias , Humanos , Interferons , Antígeno B7-H1 , Neoplasias/patologia , Antineoplásicos/efeitos adversos , Anticorpos Biespecíficos/efeitos adversos , Imunoterapia , Biologia
2.
Cancer Res ; 81(23): 6004-6017, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34625424

RESUMO

Hyperpolarized 13C-MRI is an emerging tool for probing tissue metabolism by measuring 13C-label exchange between intravenously injected hyperpolarized [1-13C]pyruvate and endogenous tissue lactate. Here, we demonstrate that hyperpolarized 13C-MRI can be used to detect early response to neoadjuvant therapy in breast cancer. Seven patients underwent multiparametric 1H-MRI and hyperpolarized 13C-MRI before and 7-11 days after commencing treatment. An increase in the lactate-to-pyruvate ratio of approximately 20% identified three patients who, following 5-6 cycles of treatment, showed pathological complete response. This ratio correlated with gene expression of the pyruvate transporter MCT1 and lactate dehydrogenase A (LDHA), the enzyme catalyzing label exchange between pyruvate and lactate. Analysis of approximately 2,000 breast tumors showed that overexpression of LDHA and the hypoxia marker CAIX was associated with reduced relapse-free and overall survival. Hyperpolarized 13C-MRI represents a promising method for monitoring very early treatment response in breast cancer and has demonstrated prognostic potential. SIGNIFICANCE: Hyperpolarized carbon-13 MRI allows response assessment in patients with breast cancer after 7-11 days of neoadjuvant chemotherapy and outperformed state-of-the-art and research quantitative proton MRI techniques.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/patologia , Isótopos de Carbono/análise , Imageamento por Ressonância Magnética/métodos , Terapia Neoadjuvante/métodos , Recidiva Local de Neoplasia/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Feminino , Seguimentos , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/metabolismo , Prognóstico , Taxa de Sobrevida
3.
Br J Cancer ; 118(8): 1142-1151, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29588513

RESUMO

BACKGROUND: Mediator complex (MED) proteins have a key role in transcriptional regulation, some interacting with the oestrogen receptor (ER). Interrogation of the METABRIC cohort suggested that MED7 may regulate lymphovascular invasion (LVI). Thus MED7 expression was assessed in large breast cancer (BC) cohorts to determine clinicopathological significance. METHODS: MED7 gene expression was investigated in the METABRIC cohort (n = 1980) and externally validated using bc-GenExMiner v4.0. Immunohistochemical expression was assessed in the Nottingham primary BC series (n = 1280). Associations with clinicopathological variables and patient outcome were evaluated. RESULTS: High MED7 mRNA and protein expression was associated with good prognostic factors: low grade, smaller tumour size, good NPI, positive hormone receptor status (p < 0.001), and negative LVI (p = 0.04) status. Higher MED7 protein expression was associated with improved BC-specific survival within the whole cohort and ER+/luminal subgroup. Pooled MED7 gene expression data in the external validation cohort confirmed association with better survival, corroborating with the protein expression. On multivariate analysis, MED7 protein was independently predictive of longer BC-specific survival in the whole cohort and Luminal A subtype (p < 0.001). CONCLUSIONS: MED7 is an important prognostic marker in BC, particularly in ER+luminal subtypes, associated with improved survival and warrants future functional analysis.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Complexo Mediador/fisiologia , Adulto , Idoso , Biomarcadores Tumorais/genética , Neoplasias da Mama/classificação , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Núcleo Celular/genética , Núcleo Celular/metabolismo , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Complexo Mediador/genética , Pessoa de Meia-Idade , Invasividade Neoplásica , Prognóstico , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Análise de Sobrevida
4.
Nat Cell Biol ; 19(6): 603-613, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28504705

RESUMO

The epidermis is maintained by multiple stem cell populations whose progeny differentiate along diverse, and spatially distinct, lineages. Here we show that the transcription factor Gata6 controls the identity of the previously uncharacterized sebaceous duct (SD) lineage and identify the Gata6 downstream transcription factor network that specifies a lineage switch between sebocytes and SD cells. During wound healing differentiated Gata6+ cells migrate from the SD into the interfollicular epidermis and dedifferentiate, acquiring the ability to undergo long-term self-renewal and differentiate into a much wider range of epidermal lineages than in undamaged tissue. Our data not only demonstrate that the structural and functional complexity of the junctional zone is regulated by Gata6, but also reveal that dedifferentiation is a previously unrecognized property of post-mitotic, terminally differentiated cells that have lost contact with the basement membrane. This resolves the long-standing debate about the contribution of terminally differentiated cells to epidermal wound repair.


Assuntos
Desdiferenciação Celular , Epiderme/metabolismo , Fator de Transcrição GATA6/metabolismo , Glândulas Sebáceas/metabolismo , Células-Tronco/metabolismo , Cicatrização , Ferimentos e Lesões/metabolismo , Animais , Linhagem da Célula , Movimento Celular , Plasticidade Celular , Autorrenovação Celular , Células Cultivadas , Modelos Animais de Doenças , Epiderme/patologia , Feminino , Fator de Transcrição GATA6/deficiência , Fator de Transcrição GATA6/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Fator 1 de Ligação ao Domínio I Regulador Positivo , Glândulas Sebáceas/patologia , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ferimentos e Lesões/genética , Ferimentos e Lesões/patologia
5.
Oncotarget ; 7(46): 74734-74746, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27732966

RESUMO

Two independent regions within HNF1B are consistently identified in prostate and ovarian cancer genome-wide association studies (GWAS); their functional roles are unclear. We link prostate cancer (PC) risk SNPs rs11649743 and rs3760511 with elevated HNF1B gene expression and allele-specific epigenetic silencing, and outline a mechanism by which common risk variants could effect functional changes that increase disease risk: functional assays suggest that HNF1B is a pro-differentiation factor that suppresses epithelial-to-mesenchymal transition (EMT) in unmethylated, healthy tissues. This tumor-suppressor activity is lost when HNF1B is silenced by promoter methylation in the progression to PC. Epigenetic inactivation of HNF1B in ovarian cancer also associates with known risk SNPs, with a similar impact on EMT. This represents one of the first comprehensive studies into the pleiotropic role of a GWAS-associated transcription factor across distinct cancer types, and is the first to describe a conserved role for a multi-cancer genetic risk factor.


Assuntos
Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Fator 1-beta Nuclear de Hepatócito/genética , Neoplasias Ovarianas/genética , Regiões Promotoras Genéticas , Neoplasias da Próstata/genética , Alelos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Desequilíbrio de Ligação , Masculino , Neoplasias Ovarianas/patologia , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/patologia , Risco
6.
Cancer Res ; 76(19): 5881-5893, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27496708

RESUMO

Glucuronidation is an enzymatic process that terminally inactivates steroid hormones, including estrogens and androgens, thereby influencing carcinogenesis in hormone-dependent cancers. While estrogens drive breast carcinogenesis via the estrogen receptor alpha (ERα), androgens play a critical role as prohormones for estrogen biosynthesis and ligands for the androgen receptor (AR). In this study, the expression and regulation of two androgen-inactivating enzymes, the UDP-glucuronosyltransferases UGT2B15 and UGT2B17, was assessed in breast cancer. In large clinical cohorts, high UGT2B15 and UGT2B17 levels positively influenced disease-specific survival in distinct molecular subgroups. Expression of these genes was highest in cases positive for ERα. In cell line models, ERα, AR, and the transcription factor FOXA1 cooperated to increase transcription via tandem binding events at their proximal promoters. ERα activity was dependent on FOXA1, facilitated by AR activation, and potently stimulated by estradiol as well as estrogenic metabolites of 5α-dihydrotestosterone. AR activity was mediated via binding to an estrogen receptor half-site 3' to the FOXA1 and ERα-binding sites. Although AR and FOXA1 bound the UGT promoters in AR-positive/ERα-negative breast cancer cell lines, androgen treatment did not influence basal transcription levels. Ex vivo culture of human breast tissue and ERα+ tumors provided evidence for upregulation of UGT2B15 and UGT2B17 by estrogen or androgen treatment. ERα binding was evident at the promoters of these genes in a small cohort of primary tumors and distant metastases. Collectively, these data provide insight into sex steroid receptor-mediated regulation of androgen-inactivating enzymes in ERα+ breast cancer, which may have subtype-specific consequences for disease progression and outcomes. Cancer Res; 76(19); 5881-93. ©2016 AACR.


Assuntos
Neoplasias da Mama/enzimologia , Receptor alfa de Estrogênio/análise , Glucuronosiltransferase/fisiologia , Antígenos de Histocompatibilidade Menor/fisiologia , Receptores Androgênicos/análise , Anilidas/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Glucuronosiltransferase/genética , Fator 3-alfa Nuclear de Hepatócito/fisiologia , Humanos , Antígenos de Histocompatibilidade Menor/genética , Regiões Promotoras Genéticas , Receptor ErbB-2/análise
8.
Lancet Oncol ; 17(7): 1004-1018, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27312051

RESUMO

BACKGROUND: Proliferation markers and profiles have been recommended for guiding the choice of systemic treatments for breast cancer. However, the best molecular marker or test to use has not yet been identified. We did this study to identify factors that drive proliferation and its associated features in breast cancer and assess their association with clinical outcomes and response to chemotherapy. METHODS: We applied an artificial neural network-based integrative data mining approach to data from three cohorts of patients with breast cancer (the Nottingham discovery cohort (n=171), Uppsala cohort (n=249), and Molecular Taxonomy of Breast Cancer International Consortium [METABRIC] cohort; n=1980). We then identified the genes with the most effect on other genes in the resulting interactome map. Sperm-associated antigen 5 (SPAG5) featured prominently in our interactome map of proliferation and we chose to take it forward in our analysis on the basis of its fundamental role in the function and dynamic regulation of mitotic spindles, mitotic progression, and chromosome segregation fidelity. We investigated the clinicopathological relevance of SPAG5 gene copy number aberrations, mRNA transcript expression, and protein expression and analysed the associations of SPAG5 copy number aberrations, transcript expression, and protein expression with breast cancer-specific survival, disease-free survival, distant relapse-free survival, pathological complete response, and residual cancer burden in the Nottingham discovery cohort, Uppsala cohort, METABRIC cohort, a pooled untreated lymph node-negative cohort (n=684), a multicentre combined cohort (n=5439), the Nottingham historical early stage breast cancer cohort (Nottingham-HES; n=1650), Nottingham early stage oestrogen receptor-negative breast cancer adjuvant chemotherapy cohort (Nottingham-oestrogen receptor-negative-ACT; n=697), the Nottingham anthracycline neoadjuvant chemotherapy cohort (Nottingham-NeoACT; n=200), the MD Anderson taxane plus anthracycline-based neoadjuvant chemotherapy cohort (MD Anderson-NeoACT; n=508), and the multicentre phase 2 neoadjuvant clinical trial cohort (phase 2 NeoACT; NCT00455533; n=253). FINDINGS: In the METABRIC cohort, we detected SPAG5 gene gain or amplification at the Ch17q11.2 locus in 206 (10%) of 1980 patients overall, 46 (19%) of 237 patients with a PAM50-HER2 phenotype, and 87 (18%) of 488 patients with PAM50-LumB phenotype. Copy number aberration leading to SPAG5 gain or amplification and high SPAG5 transcript and SPAG5 protein concentrations were associated with shorter overall breast cancer-specific survival (METABRIC cohort [copy number aberration]: hazard ratio [HR] 1·50, 95% CI 1·18-1·92, p=0·00010; METABRIC cohort [transcript]: 1·68, 1·40-2·01, p<0·0001; and Nottingham-HES-breast cancer cohort [protein]: 1·68, 1·32-2·12, p<0·0001). In multivariable analysis, high SPAG5 transcript and SPAG5 protein expression were associated with reduced breast cancer-specific survival at 10 years compared with lower concentrations (Uppsala: HR 1·62, 95% CI 1·03-2·53, p=0·036; METABRIC: 1·27, 1·02-1·58, p=0·034; untreated lymph node-negative cohort: 2·34, 1·24-4·42, p=0·0090; and Nottingham-HES: 1·73, 1·23-2·46, p=0·0020). In patients with oestrogen receptor-negative breast cancer with high SPAG5 protein expression, anthracycline-based adjuvant chemotherapy increased breast cancer-specific survival overall compared with that for patients who did not receive chemotherapy (Nottingham-oestrogen receptor-negative-ACT cohort: HR 0·37, 95% CI 0·20-0·60, p=0·0010). Multivariable analysis showed high SPAG5 transcript concentrations to be independently associated with longer distant relapse-free survival after receiving taxane plus anthracycline neoadjuvant chemotherapy (MD Anderson-NeoACT: HR 0·68, 95% CI 0·48-0·97, p=0·031). In multivariable analysis, both high SPAG5 transcript and high SPAG5 protein concentrations were independent predictors for a higher proportion of patients achieving a pathological complete response after combination cytotoxic chemotherapy (MD Anderson-NeoACT: OR 1·71, 95% CI, 1·07-2·74, p=0·024; Nottingham-ACT: 8·75, 2·42-31·62, p=0·0010). INTERPRETATION: SPAG5 is a novel amplified gene on Ch17q11.2 in breast cancer. The transcript and protein products of SPAG5 are independent prognostic and predictive biomarkers that might have clinical utility as biomarkers for combination cytotoxic chemotherapy sensitivity, especially in oestrogen receptor-negative breast cancer. FUNDING: Nottingham Hospitals Charity and the John and Lucille van Geest Foundation.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Genômica/métodos , Proteoma/análise , Adulto , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Estudos de Casos e Controles , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Terapia Neoadjuvante , Estadiamento de Neoplasias , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida , Transcriptoma
9.
Nat Commun ; 7: 11479, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27161491

RESUMO

The genomic landscape of breast cancer is complex, and inter- and intra-tumour heterogeneity are important challenges in treating the disease. In this study, we sequence 173 genes in 2,433 primary breast tumours that have copy number aberration (CNA), gene expression and long-term clinical follow-up data. We identify 40 mutation-driver (Mut-driver) genes, and determine associations between mutations, driver CNA profiles, clinical-pathological parameters and survival. We assess the clonal states of Mut-driver mutations, and estimate levels of intra-tumour heterogeneity using mutant-allele fractions. Associations between PIK3CA mutations and reduced survival are identified in three subgroups of ER-positive cancer (defined by amplification of 17q23, 11q13-14 or 8q24). High levels of intra-tumour heterogeneity are in general associated with a worse outcome, but highly aggressive tumours with 11q13-14 amplification have low levels of intra-tumour heterogeneity. These results emphasize the importance of genome-based stratification of breast cancer, and have important implications for designing therapeutic strategies.


Assuntos
Neoplasias da Mama/genética , Mutação , Adulto , Idoso , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Variações do Número de Cópias de DNA , Feminino , Genes Supressores de Tumor , Estudos de Associação Genética , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Transcriptoma
10.
Eur Urol ; 70(2): 214-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26572708

RESUMO

UNLABELLED: The androgen receptor (AR) is the dominant growth factor in prostate cancer (PCa). Therefore, understanding how ARs regulate the human transcriptome is of paramount importance. The early effects of castration on human PCa have not previously been studied 27 patients medically castrated with degarelix 7 d before radical prostatectomy. We used mass spectrometry, immunohistochemistry, and gene expression array (validated by reverse transcription-polymerase chain reaction) to compare resected tumour with matched, controlled, untreated PCa tissue. All patients had levels of serum androgen, with reduced levels of intraprostatic androgen at prostatectomy. We observed differential expression of known androgen-regulated genes (TMPRSS2, KLK3, CAMKK2, FKBP5). We identified 749 genes downregulated and 908 genes upregulated following castration. AR regulation of α-methylacyl-CoA racemase expression and three other genes (FAM129A, RAB27A, and KIAA0101) was confirmed. Upregulation of oestrogen receptor 1 (ESR1) expression was observed in malignant epithelia and was associated with differential expression of ESR1-regulated genes and correlated with proliferation (Ki-67 expression). PATIENT SUMMARY: This first-in-man study defines the rapid gene expression changes taking place in prostate cancer (PCa) following castration. Expression levels of the genes that the androgen receptor regulates are predictive of treatment outcome. Upregulation of oestrogen receptor 1 is a mechanism by which PCa cells may survive despite castration.


Assuntos
Oligopeptídeos/administração & dosagem , Prostatectomia/métodos , Neoplasias da Próstata , Receptores Androgênicos/metabolismo , Receptor alfa de Estrogênio/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antagonistas de Hormônios/administração & dosagem , Humanos , Imuno-Histoquímica , Masculino , Cuidados Pré-Operatórios , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Análise Espectral/métodos
11.
RNA ; 22(2): 193-203, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26670622

RESUMO

MicroRNAs are short (17-26) noncoding RNAs driving or modulating physiological and pathological cellular events. Overexpression of miR-155 is pathogenic in B-cell malignancy but was also reported in a number of solid tumors-in particular, in breast cancer, where its role remains unclear and often contradictory. Using representative cell line models, we sought to determine whether the discrepant miR-155 effects in breast cancer could be explained by the heterogeneity of the disease. The growth of six breast cancer cell lines transfected with several miRNA mimics was analyzed. We found MCF-7 cell growth to be inhibited by miR-155 and miR-145 mimics, both 23-nt long, but not by a number of shorter mimics, including a universal commercial negative control. Microarray and Western blot analyses revealed induction of apoptosis, associated with interferon-ß after activation of the double-stranded RNA sensor pathway. 3' Trimming of the miRNA mimics to 21 nt substantially reduced their growth-inhibitory potency. Mutating the canonical seed of the miR-155 mimic had no effect on the induced inhibition, which was abolished by mutating the miRNA seed of the artificial passenger strand. A panel of breast cancer cell lines showed a wide range of sensitivities to 23-mer mimics, broadly consistent with the sensitivity of the cell lines to Poly (I:C). We demonstrate two sources for nonspecific in vitro effects by miRNA mimics: duplex length and the artificial passenger strand. We highlight the danger of a universal 21-mer negative control and the importance of using matched seed mutants for reliable interpretation of phenotypes.


Assuntos
Células Epiteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , RNA de Cadeia Dupla/genética , RNA Interferente Pequeno/genética , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Células Epiteliais/patologia , Feminino , Humanos , Interferon beta/biossíntese , Interferon beta/genética , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , MicroRNAs/metabolismo , Análise em Microsséries , Mimetismo Molecular , Especificidade de Órgãos , Poli I-C/genética , Poli I-C/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade
12.
J Natl Cancer Inst ; 108(5)2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26657335

RESUMO

BACKGROUND: The androgen receptor (AR) is a major drug target in prostate cancer (PCa). We profiled the AR-regulated kinome to identify clinically relevant and druggable effectors of AR signaling. METHODS: Using genome-wide approaches, we interrogated all AR regulated kinases. Among these, choline kinase alpha (CHKA) expression was evaluated in benign (n = 195), prostatic intraepithelial neoplasia (PIN) (n = 153) and prostate cancer (PCa) lesions (n = 359). We interrogated how CHKA regulates AR signaling using biochemical assays and investigated androgen regulation of CHKA expression in men with PCa, both untreated (n = 20) and treated with an androgen biosynthesis inhibitor degarelix (n = 27). We studied the effect of CHKA inhibition on the PCa transcriptome using RNA sequencing and tested the effect of CHKA inhibition on cell growth, clonogenic survival and invasion. Tumor xenografts (n = 6 per group) were generated in mice using genetically engineered prostate cancer cells with inducible CHKA knockdown. Data were analyzed with χ(2) tests, Cox regression analysis, and Kaplan-Meier methods. All statistical tests were two-sided. RESULTS: CHKA expression was shown to be androgen regulated in cell lines, xenografts, and human tissue (log fold change from 6.75 to 6.59, P = .002) and was positively associated with tumor stage. CHKA binds directly to the ligand-binding domain (LBD) of AR, enhancing its stability. As such, CHKA is the first kinase identified as an AR chaperone. Inhibition of CHKA repressed the AR transcriptional program including pathways enriched for regulation of protein folding, decreased AR protein levels, and inhibited the growth of PCa cell lines, human PCa explants, and tumor xenografts. CONCLUSIONS: CHKA can act as an AR chaperone, providing, to our knowledge, the first evidence for kinases as molecular chaperones, making CHKA both a marker of tumor progression and a potential therapeutic target for PCa.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Colina Quinase/metabolismo , Chaperonas Moleculares , Terapia de Alvo Molecular/métodos , Prostatectomia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/enzimologia , Receptores Androgênicos/metabolismo , Transdução de Sinais , Idoso , Animais , Colina Quinase/antagonistas & inibidores , Colina Quinase/genética , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Modelos de Riscos Proporcionais , Prostatectomia/métodos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Análise de Sequência de DNA , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Oncotarget ; 6(42): 44728-44, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26554309

RESUMO

The importance of androgen receptor (AR) signaling is increasingly being recognized in breast cancer, which has elicited clinical trials aimed at assessing the efficacy of androgen deprivation therapy (ADT) for metastatic disease. In prostate cancer, resistance to ADT is frequently associated with the emergence of androgen-independent splice variants of the AR (AR variants, AR-Vs) that lack the LBD and are constitutively active. Women with breast cancer may be prone to a similar phenomenon. Herein, we show that in addition to the prototypical transcript, the AR gene produces a diverse range of AR-V transcripts in primary breast tumors. The most frequently and highly expressed variant was AR-V7 (exons 1/2/3/CE3), which was detectable at the mRNA level in > 50% of all breast cancers and at the protein level in a subset of ERα-negative tumors. Functionally, AR-V7 is a constitutively active and ADT-resistant transcription factor that promotes growth and regulates a transcriptional program distinct from AR in ERα-negative breast cancer cells. Importantly, we provide ex vivo evidence that AR-V7 is upregulated by the AR antagonist enzalutamide in primary breast tumors. These findings have implications for treatment response in the ongoing clinical trials of ADT in breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Receptores Androgênicos/metabolismo , Antagonistas de Androgênios/farmacologia , Antineoplásicos Hormonais/farmacologia , Benzamidas , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Bases de Dados Genéticas , Resistencia a Medicamentos Antineoplásicos , Receptor alfa de Estrogênio/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Células MCF-7 , Nitrilas , Feniltioidantoína/análogos & derivados , Feniltioidantoína/farmacologia , Isoformas de Proteínas , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Androgênicos/efeitos dos fármacos , Receptores Androgênicos/genética , Transdução de Sinais , Fatores de Tempo , Transcrição Gênica , Transfecção
14.
Cell Rep ; 13(1): 108-121, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26411678

RESUMO

Estrogen receptor α (ERα) is the key transcriptional driver in a large proportion of breast cancers. We report that APOBEC3B (A3B) is required for regulation of gene expression by ER and acts by causing C-to-U deamination at ER binding regions. We show that these C-to-U changes lead to the generation of DNA strand breaks through activation of base excision repair (BER) and to repair by non-homologous end-joining (NHEJ) pathways. We provide evidence that transient cytidine deamination by A3B aids chromatin modification and remodelling at the regulatory regions of ER target genes that promotes their expression. A3B expression is associated with poor patient survival in ER+ breast cancer, reinforcing the physiological significance of A3B for ER action.


Assuntos
Neoplasias da Mama/genética , Citidina Desaminase/genética , Citidina/metabolismo , Reparo do DNA por Junção de Extremidades , Receptor alfa de Estrogênio/genética , Regulação Neoplásica da Expressão Gênica , Sítios de Ligação , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Citidina Desaminase/antagonistas & inibidores , Citidina Desaminase/metabolismo , DNA/genética , DNA/metabolismo , Dano ao DNA , Desaminação , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Antígenos de Histocompatibilidade Menor , Prognóstico , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Análise de Sobrevida , Transcrição Gênica , Fator Trefoil-1 , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
15.
Breast Cancer Res ; 17: 83, 2015 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-26070602

RESUMO

INTRODUCTION: The study of mammalian development has offered many insights into the molecular aetiology of cancer. We previously used analysis of mammary morphogenesis to discover a critical role for GATA-3 in mammary developmental and carcinogenesis. In recent years an important role for microRNAs (miRNAs) in a myriad of cellular processes in development and in oncogenesis has emerged. METHODS: microRNA profiling was conducted on stromal and epithelial cellular subsets microdissected from the pubertal mouse mammary gland. miR-184 was reactivated by transient or stable overexpression in breast cancer cell lines and examined using a series of in vitro (proliferation, tumour-sphere and protein synthesis) assays. Orthotopic xenografts of breast cancer cells were used to assess the effect of miR-184 on tumourigenesis as well as distant metastasis. Interactions between miR-184 and its putative targets were assessed by quantitative PCR, microarray, bioinformatics and 3' untranslated region Luciferase reporter assay. The methylation status of primary patient samples was determined by MBD-Cap sequencing. Lastly, the clinical prognostic significance of miR-184 putative targets was assessed using publicly available datasets. RESULTS: A large number of microRNA were restricted in their expression to specific tissue subsets. MicroRNA-184 (miR-184) was exclusively expressed in epithelial cells and markedly upregulated during differentiation of the proliferative, invasive cells of the pubertal terminal end bud (TEB) into ductal epithelial cells in vivo. miR-184 expression was silenced in mouse tumour models compared to non-transformed epithelium and in a majority of breast cancer cell line models. Ectopic reactivation of miR-184 inhibited the proliferation and self-renewal of triple negative breast cancer (TNBC) cell lines in vitro and delayed primary tumour formation and reduced metastatic burden in vivo. Gene expression studies uncovered multi-factorial regulation of genes in the AKT/mTORC1 pathway by miR-184. In clinical breast cancer tissues, expression of miR-184 is lost in primary TNBCs while the miR-184 promoter is methylated in a subset of lymph node metastases from TNBC patients. CONCLUSIONS: These studies elucidate a new layer of regulation in the PI3K/AKT/mTOR pathway with relevance to mammary development and tumour progression and identify miR-184 as a putative breast tumour suppressor.


Assuntos
Neoplasias da Mama/genética , Perfilação da Expressão Gênica , Genes Supressores de Tumor , Glândulas Mamárias Animais/metabolismo , MicroRNAs/genética , Maturidade Sexual/genética , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Análise por Conglomerados , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Camundongos , Metástase Neoplásica , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Serina-Treonina Quinases TOR/metabolismo
16.
EMBO Mol Med ; 7(3): 299-314, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25678558

RESUMO

Dissemination of primary tumor cells depends on migratory and invasive attributes. Here, we identify Navigator-3 (NAV3), a gene frequently mutated or deleted in human tumors, as a regulator of epithelial migration and invasion. Following induction by growth factors, NAV3 localizes to the plus ends of microtubules and enhances their polarized growth. Accordingly, NAV3 depletion trimmed microtubule growth, prolonged growth factor signaling, prevented apoptosis and enhanced random cell migration. Mathematical modeling suggested that NAV3-depleted cells acquire an advantage in terms of the way they explore their environment. In animal models, silencing NAV3 increased metastasis, whereas ectopic expression of the wild-type form, unlike expression of two, relatively unstable oncogenic mutants from human tumors, inhibited metastasis. Congruently, analyses of > 2,500 breast and lung cancer patients associated low NAV3 with shorter survival. We propose that NAV3 inhibits breast cancer progression by regulating microtubule dynamics, biasing directionally persistent rather than random migration, and inhibiting locomotion of initiated cells.


Assuntos
Neoplasias da Mama/complicações , Neoplasias da Mama/patologia , Movimento Celular , Proteínas de Membrana/metabolismo , Metástase Neoplásica/patologia , Proteínas do Tecido Nervoso/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos
17.
Sci Signal ; 8(360): ra7, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25605973

RESUMO

Amplified HER2, which encodes a member of the epidermal growth factor receptor (EGFR) family, is a target of effective therapies against breast cancer. In search for similarly targetable genomic aberrations, we identified copy number gains in SYNJ2, which encodes the 5'-inositol lipid phosphatase synaptojanin 2, as well as overexpression in a small fraction of human breast tumors. Copy gain and overexpression correlated with shorter patient survival and a low abundance of the tumor suppressor microRNA miR-31. SYNJ2 promoted cell migration and invasion in culture and lung metastasis of breast tumor xenografts in mice. Knocking down SYNJ2 impaired the endocytic recycling of EGFR and the formation of cellular lamellipodia and invadopodia. Screening compound libraries identified SYNJ2-specific inhibitors that prevented cell migration but did not affect the related neural protein SYNJ1, suggesting that SYNJ2 is a potentially druggable target to block cancer cell migration.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica/genética , Metástase Neoplásica/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/fisiopatologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Descoberta de Drogas , Receptores ErbB/metabolismo , Feminino , Imunofluorescência , Dosagem de Genes , Humanos , Processamento de Imagem Assistida por Computador , Immunoblotting , Imuno-Histoquímica , Camundongos , Camundongos SCID , Microscopia Eletrônica de Varredura , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Podossomos/genética , Podossomos/fisiologia , Pseudópodes/genética , Pseudópodes/fisiologia , RNA Interferente Pequeno/genética , Estatísticas não Paramétricas
18.
Mol Oncol ; 9(1): 204-17, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25205036

RESUMO

BRCA1, a key factor in homologous recombination (HR) repair may also regulate base excision repair (BER). Targeting BRCA1-BER deficient cells by blockade of ATM and DNA-PKcs could be a promising strategy in breast cancer. We investigated BRCA1, XRCC1 and pol ß protein expression in two cohorts (n = 1602 sporadic and n = 50 germ-line BRCA1 mutated) and mRNA expression in two cohorts (n = 1952 and n = 249). Artificial neural network analysis for BRCA1-DNA repair interacting genes was conducted in 249 tumours. Pre-clinically, BRCA1 proficient and deficient cells were DNA repair expression profiled and evaluated for synthetic lethality using ATM and DNA-PKcs inhibitors either alone or in combination with cisplatin. In human tumours, BRCA1 negativity was strongly associated with low XRCC1, and low pol ß at mRNA and protein levels (p < 0.0001). In patients with BRCA1 negative tumours, low XRCC1 or low pol ß expression was significantly associated with poor survival in univariate and multivariate analysis compared to high XRCC1 or high pol ß expressing BRCA1 negative tumours (ps < 0.05). Pre-clinically, BRCA1 negative cancer cells exhibit low mRNA and low protein expression of XRCC1 and pol ß. BRCA1-BER deficient cells were sensitive to ATM and DNA-PKcs inhibitor treatment either alone or in combination with cisplatin and synthetic lethality was evidenced by DNA double strand breaks accumulation, cell cycle arrest and apoptosis. We conclude that XRCC1 and pol ß expression status in BRCA1 negative tumours may have prognostic significance. BRCA1-BER deficient cells could be targeted by ATM or DNA-PKcs inhibitors for personalized therapy.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteína BRCA1/metabolismo , Neoplasias da Mama/tratamento farmacológico , Cisplatino/farmacologia , Reparo do DNA , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Proteínas Nucleares/antagonistas & inibidores , Medicina de Precisão , Inibidores de Proteínas Quinases/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/genética , Neoplasias da Mama/enzimologia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Estudos de Coortes , Quebras de DNA de Cadeia Dupla , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Intervalo Livre de Doença , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Taxa de Sobrevida
19.
Mol Oncol ; 8(7): 1326-38, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24880630

RESUMO

FEN1 has key roles in Okazaki fragment maturation during replication, long patch base excision repair, rescue of stalled replication forks, maintenance of telomere stability and apoptosis. FEN1 may be dysregulated in breast and ovarian cancers and have clinicopathological significance in patients. We comprehensively investigated FEN1 mRNA expression in multiple cohorts of breast cancer [training set (128), test set (249), external validation (1952)]. FEN1 protein expression was evaluated in 568 oestrogen receptor (ER) negative breast cancers, 894 ER positive breast cancers and 156 ovarian epithelial cancers. FEN1 mRNA overexpression was highly significantly associated with high grade (p = 4.89 × 10(-57)), high mitotic index (p = 5.25 × 10(-28)), pleomorphism (p = 6.31 × 10(-19)), ER negative (p = 9.02 × 10(-35)), PR negative (p = 9.24 × 10(-24)), triple negative phenotype (p = 6.67 × 10(-21)), PAM50.Her2 (p = 5.19 × 10(-13)), PAM50. Basal (p = 2.7 × 10(-41)), PAM50.LumB (p = 1.56 × 10(-26)), integrative molecular cluster 1 (intClust.1) (p = 7.47 × 10(-12)), intClust.5 (p = 4.05 × 10(-12)) and intClust. 10 (p = 7.59 × 10(-38)) breast cancers. FEN1 mRNA overexpression is associated with poor breast cancer specific survival in univariate (p = 4.4 × 10(-16)) and multivariate analysis (p = 9.19 × 10(-7)). At the protein level, in ER positive tumours, FEN1 overexpression remains significantly linked to high grade, high mitotic index and pleomorphism (ps < 0.01). In ER negative tumours, high FEN1 is significantly associated with pleomorphism, tumour type, lymphovascular invasion, triple negative phenotype, EGFR and HER2 expression (ps < 0.05). In ER positive as well as in ER negative tumours, FEN1 protein overexpression is associated with poor survival in univariate and multivariate analysis (ps < 0.01). In ovarian epithelial cancers, similarly, FEN1 overexpression is associated with high grade, high stage and poor survival (ps < 0.05). We conclude that FEN1 is a promising biomarker in breast and ovarian epithelial cancer.


Assuntos
Neoplasias da Mama/genética , Mama/patologia , Endonucleases Flap/genética , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/genética , Ovário/patologia , Idoso , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Mama/metabolismo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Carcinoma Epitelial do Ovário , Feminino , Endonucleases Flap/análise , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Epiteliais e Glandulares/diagnóstico , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/patologia , Ovário/metabolismo , Prognóstico
20.
EMBO J ; 33(12): 1365-82, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24837709

RESUMO

Tumour cells sustain their high proliferation rate through metabolic reprogramming, whereby cellular metabolism shifts from oxidative phosphorylation to aerobic glycolysis, even under normal oxygen levels. Hypoxia-inducible factor 1A (HIF1A) is a major regulator of this process, but its activation under normoxic conditions, termed pseudohypoxia, is not well documented. Here, using an integrative approach combining the first genome-wide mapping of chromatin binding for an endocytic adaptor, ARRB1, both in vitro and in vivo with gene expression profiling, we demonstrate that nuclear ARRB1 contributes to this metabolic shift in prostate cancer cells via regulation of HIF1A transcriptional activity under normoxic conditions through regulation of succinate dehydrogenase A (SDHA) and fumarate hydratase (FH) expression. ARRB1-induced pseudohypoxia may facilitate adaptation of cancer cells to growth in the harsh conditions that are frequently encountered within solid tumours. Our study is the first example of an endocytic adaptor protein regulating metabolic pathways. It implicates ARRB1 as a potential tumour promoter in prostate cancer and highlights the importance of metabolic alterations in prostate cancer.


Assuntos
Arrestinas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Neoplasias da Próstata/fisiopatologia , Imunoprecipitação da Cromatina , Imunofluorescência , Fumarato Hidratase/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Humanos , Immunoblotting , Imuno-Histoquímica , Espectroscopia de Ressonância Magnética , Masculino , Metabolômica , Neoplasias da Próstata/metabolismo , Interferência de RNA , Succinato Desidrogenase/metabolismo , Análise Serial de Tecidos , beta-Arrestina 1 , beta-Arrestinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...