Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
PLoS Comput Biol ; 20(3): e1011967, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38517931

RESUMO

The epidemiological characteristics of SARS-CoV-2 transmission have changed over the pandemic due to emergence of new variants. A decrease in the generation or serial intervals would imply a shortened transmission timescale and, hence, outbreak response measures would need to expand at a faster rate. However, there are challenges in measuring these intervals. Alongside epidemiological changes, factors like varying delays in outbreak response, social contact patterns, dependence on the growth phase of an outbreak, and effects of exposure to multiple infectors can also influence measured generation or serial intervals. To guide real-time interpretation of variant data, we simulated concurrent changes in the aforementioned factors and estimated the statistical power to detect a change in the generation and serial interval. We compared our findings to the reported decrease or lack thereof in the generation and serial intervals of different SARS-CoV-2 variants. Our study helps to clarify contradictory outbreak observations and informs the required sample sizes under certain outbreak conditions to ensure that future studies of generation and serial intervals are adequately powered.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Surtos de Doenças , Pandemias , Previsões , Biologia
2.
PLoS One ; 19(3): e0294897, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512960

RESUMO

BACKGROUND: SARS-CoV-2 variant Omicron rapidly evolved over 2022, causing three waves of infection due to sub-variants BA.1, BA.2 and BA.4/5. We sought to characterise symptoms and viral loads over the course of COVID-19 infection with these sub-variants in otherwise-healthy, vaccinated, non-hospitalised adults, and compared data to infections with the preceding Delta variant of concern (VOC). METHODS: In a prospective, observational cohort study, healthy vaccinated UK adults who reported a positive polymerase chain reaction (PCR) or lateral flow test, self-swabbed on alternate weekdays until day 10. We compared participant-reported symptoms and viral load trajectories between infections caused by VOCs Delta and Omicron (sub-variants BA.1, BA.2 or BA.4/5), and tested for relationships between vaccine dose, symptoms and PCR cycle threshold (Ct) as a proxy for viral load using Chi-squared (χ2) and Wilcoxon tests. RESULTS: 563 infection episodes were reported among 491 participants. Across infection episodes, there was little variation in symptom burden (4 [IQR 3-5] symptoms) and duration (8 [IQR 6-11] days). Whilst symptom profiles differed among infections caused by Delta compared to Omicron sub-variants, symptom profiles were similar between Omicron sub-variants. Anosmia was reported more frequently in Delta infections after 2 doses compared with Omicron sub-variant infections after 3 doses, for example: 42% (25/60) of participants with Delta infection compared to 9% (6/67) with Omicron BA.4/5 (χ2 P < 0.001; OR 7.3 [95% CI 2.7-19.4]). Fever was less common with Delta (20/60 participants; 33%) than Omicron BA.4/5 (39/67; 58%; χ2 P = 0.008; OR 0.4 [CI 0.2-0.7]). Amongst infections with an Omicron sub-variants, symptoms of coryza, fatigue, cough and myalgia predominated. Viral load trajectories and peaks did not differ between Delta, and Omicron, irrespective of symptom severity (including asymptomatic participants), VOC or vaccination status. PCR Ct values were negatively associated with time since vaccination in participants infected with BA.1 (ß = -0.05 (CI -0.10-0.01); P = 0.031); however, this trend was not observed in BA.2 or BA.4/5 infections. CONCLUSION: Our study emphasises both the changing symptom profile of COVID-19 infections in the Omicron era, and ongoing transmission risk of Omicron sub-variants in vaccinated adults. TRIAL REGISTRATION: NCT04750356.


Assuntos
COVID-19 , Adulto , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Estudos Prospectivos , Vacinação
3.
PLoS Biol ; 22(1): e3002463, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38289907

RESUMO

The emergence of successive Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) during 2020 to 2022, each exhibiting increased epidemic growth relative to earlier circulating variants, has created a need to understand the drivers of such growth. However, both pathogen biology and changing host characteristics-such as varying levels of immunity-can combine to influence replication and transmission of SARS-CoV-2 within and between hosts. Disentangling the role of variant and host in individual-level viral shedding of VOCs is essential to inform Coronavirus Disease 2019 (COVID-19) planning and response and interpret past epidemic trends. Using data from a prospective observational cohort study of healthy adult volunteers undergoing weekly occupational health PCR screening, we developed a Bayesian hierarchical model to reconstruct individual-level viral kinetics and estimate how different factors shaped viral dynamics, measured by PCR cycle threshold (Ct) values over time. Jointly accounting for both interindividual variation in Ct values and complex host characteristics-such as vaccination status, exposure history, and age-we found that age and number of prior exposures had a strong influence on peak viral replication. Older individuals and those who had at least 5 prior antigen exposures to vaccination and/or infection typically had much lower levels of shedding. Moreover, we found evidence of a correlation between the speed of early shedding and duration of incubation period when comparing different VOCs and age groups. Our findings illustrate the value of linking information on participant characteristics, symptom profile and infecting variant with prospective PCR sampling, and the importance of accounting for increasingly complex population exposure landscapes when analysing the viral kinetics of VOCs. Trial Registration: The Legacy study is a prospective observational cohort study of healthy adult volunteers undergoing weekly occupational health PCR screening for SARS-CoV-2 at University College London Hospitals or at the Francis Crick Institute (NCT04750356) (22,23). The Legacy study was approved by London Camden and Kings Cross Health Research Authority Research and Ethics committee (IRAS number 286469). The Legacy study was approved by London Camden and Kings Cross Health Research Authority Research and Ethics committee (IRAS number 286469) and is sponsored by University College London Hospitals. Written consent was given by all participants.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Humanos , SARS-CoV-2/genética , Teorema de Bayes , COVID-19/epidemiologia , Estudos Prospectivos
4.
Nat Commun ; 14(1): 7330, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957160

RESUMO

Estimating the impact of vaccination and non-pharmaceutical interventions on COVID-19 incidence is complicated by several factors, including successive emergence of SARS-CoV-2 variants of concern and changing population immunity from vaccination and infection. We develop an age-structured multi-strain COVID-19 transmission model and inference framework to estimate vaccination and non-pharmaceutical intervention impact accounting for these factors. We apply this framework to COVID-19 waves in French Polynesia and estimate that the vaccination programme averted 34.8% (95% credible interval: 34.5-35.2%) of 223,000 symptomatic cases, 49.6% (48.7-50.5%) of 5830 hospitalisations and 64.2% (63.1-65.3%) of 1540 hospital deaths that would have occurred in a scenario without vaccination up to May 2022. We estimate the booster campaign contributed 4.5%, 1.9%, and 0.4% to overall reductions in cases, hospitalisations, and deaths. Our results suggest that removing lockdowns during the first two waves would have had non-linear effects on incidence by altering accumulation of population immunity. Our estimates of vaccination and booster impact differ from those for other countries due to differences in age structure, previous exposure levels and timing of variant introduction relative to vaccination, emphasising the importance of detailed analysis that accounts for these factors.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Controle de Doenças Transmissíveis , Polinésia/epidemiologia , Vacinação
5.
PLoS Med ; 20(9): e1004283, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37683046

RESUMO

BACKGROUND: Effective Coronavirus Disease 2019 (COVID-19) response relies on good knowledge of population infection dynamics, but owing to under-ascertainment and delays in symptom-based reporting, obtaining reliable infection data has typically required large dedicated local population studies. Although many countries implemented Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) testing among travellers, it remains unclear how accurately arrival testing data can capture international patterns of infection, because those arrival testing data were rarely reported systematically, and predeparture testing was often in place as well, leading to nonrepresentative infection status among arrivals. METHODS AND FINDINGS: In French Polynesia, testing data were reported systematically with enforced predeparture testing type and timing, making it possible to adjust for nonrepresentative infection status among arrivals. Combining statistical models of polymerase chain reaction (PCR) positivity with data on international travel protocols, we reconstructed estimates of prevalence at departure using only testing data from arrivals. We then applied this estimation approach to the United States of America and France, using data from over 220,000 tests from travellers arriving into French Polynesia between July 2020 and March 2022. We estimated a peak infection prevalence at departure of 2.1% (95% credible interval: 1.7, 2.6%) in France and 1% (95% CrI: 0.63, 1.4%) in the USA in late 2020/early 2021, with prevalence of 4.6% (95% CrI: 3.9, 5.2%) and 4.3% (95% CrI: 3.6, 5%), respectively, estimated for the Omicron BA.1 waves in early 2022. We found that our infection estimates were a leading indicator of later reported case dynamics, as well as being consistent with subsequent observed changes in seroprevalence over time. We did not have linked data on traveller demography or unbiased domestic infection estimates (e.g., from random community infection surveys) in the USA and France. However, our methodology would allow for the incorporation of prior data from additional sources if available in future. CONCLUSIONS: As well as elucidating previously unmeasured infection dynamics in these countries, our analysis provides a proof-of-concept for scalable and accurate leading indicator of global infections during future pandemics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , Prevalência , Estudos Soroepidemiológicos , França/epidemiologia
6.
medRxiv ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37292842

RESUMO

The emergence of successive SARS-CoV-2 variants of concern (VOC) during 2020-22, each exhibiting increased epidemic growth relative to earlier circulating variants, has created a need to understand the drivers of such growth. However, both pathogen biology and changing host characteristics - such as varying levels of immunity - can combine to influence replication and transmission of SARS-CoV-2 within and between hosts. Disentangling the role of variant and host in individual-level viral shedding of VOCs is essential to inform COVID-19 planning and response, and interpret past epidemic trends. Using data from a prospective observational cohort study of healthy adult volunteers undergoing weekly occupational health PCR screening, we developed a Bayesian hierarchical model to reconstruct individual-level viral kinetics and estimate how different factors shaped viral dynamics, measured by PCR cycle threshold (Ct) values over time. Jointly accounting for both inter-individual variation in Ct values and complex host characteristics - such as vaccination status, exposure history and age - we found that age and number of prior exposures had a strong influence on peak viral replication. Older individuals and those who had at least five prior antigen exposures to vaccination and/or infection typically had much lower levels of shedding. Moreover, we found evidence of a correlation between the speed of early shedding and duration of incubation period when comparing different VOCs and age groups. Our findings illustrate the value of linking information on participant characteristics, symptom profile and infecting variant with prospective PCR sampling, and the importance of accounting for increasingly complex population exposure landscapes when analysing the viral kinetics of VOCs.

7.
Euro Surveill ; 28(21)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37227301

RESUMO

BackgroundSerological surveys have been the gold standard to estimate numbers of SARS-CoV-2 infections, the dynamics of the epidemic, and disease severity. Serological assays have decaying sensitivity with time that can bias their results, but there is a lack of guidelines to account for this phenomenon for SARS-CoV-2.AimOur goal was to assess the sensitivity decay of seroassays for detecting SARS-CoV-2 infections, the dependence of this decay on assay characteristics, and to provide a simple method to correct for this phenomenon.MethodsWe performed a systematic review and meta-analysis of SARS-CoV-2 serology studies. We included studies testing previously diagnosed, unvaccinated individuals, and excluded studies of cohorts highly unrepresentative of the general population (e.g. hospitalised patients).ResultsOf the 488 screened studies, 76 studies reporting on 50 different seroassays were included in the analysis. Sensitivity decay depended strongly on the antigen and the analytic technique used by the assay, with average sensitivities ranging between 26% and 98% at 6 months after infection, depending on assay characteristics. We found that a third of the included assays departed considerably from manufacturer specifications after 6 months.ConclusionsSeroassay sensitivity decay depends on assay characteristics, and for some types of assays, it can make manufacturer specifications highly unreliable. We provide a tool to correct for this phenomenon and to assess the risk of decay for a given assay. Our analysis can guide the design and interpretation of serosurveys for SARS-CoV-2 and other pathogens and quantify systematic biases in the existing serology literature.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Sensibilidade e Especificidade , Teste para COVID-19 , Testes Sorológicos/métodos , Anticorpos Antivirais
8.
BMC Med ; 21(1): 97, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927576

RESUMO

BACKGROUND: Understanding the overall effectiveness of non-pharmaceutical interventions to control the COVID-19 pandemic and reduce the burden of disease is crucial for future pandemic planning. However, quantifying the effectiveness of specific control measures and the extent of missed infections, in the absence of early large-scale serological surveys or random community testing, has remained challenging. METHODS: Combining data on notified local COVID-19 cases with known and unknown sources of infections in Singapore with a branching process model, we reconstructed the incidence of missed infections during the early phase of the wild-type SARS-CoV-2 and Delta variant transmission. We then estimated the relative effectiveness of border control measures, case finding and contact tracing when there was no or low vaccine coverage in the population. We compared the risk of ICU admission and death between the wild-type SARS-CoV-2 and the Delta variant in notified cases and all infections. RESULTS: We estimated strict border control measures were associated with 0.2 (95% credible intervals, CrI 0.04-0.8) missed imported infections per notified case between July and December 2020, a decline from around 1 missed imported infection per notified case in the early phases of the pandemic. Contact tracing was estimated to identify 78% (95% CrI 62-93%) of the secondary infections generated by notified cases before the partial lockdown in Apr 2020, but this declined to 63% (95% CrI 56-71%) during the lockdown and rebounded to 78% (95% CrI 58-94%) during reopening in Jul 2020. The contribution of contact tracing towards overall outbreak control also hinges on ability to find cases with unknown sources of infection: 42% (95% CrI 12-84%) of such cases were found prior to the lockdown; 10% (95% CrI 7-15%) during the lockdown; 47% (95% CrI 17-85%) during reopening, due to increased testing capacity and health-seeking behaviour. We estimated around 63% (95% CrI 49-78%) of the wild-type SARS-CoV-2 infections were undetected during 2020 and around 70% (95% CrI 49-91%) for the Delta variant in 2021. CONCLUSIONS: Combining models with case linkage data enables evaluation of the effectiveness of different components of outbreak control measures, and provides more reliable situational awareness when some cases are missed. Using such approaches for early identification of the weakest link in containment efforts could help policy makers to better redirect limited resources to strengthen outbreak control.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/prevenção & controle , Busca de Comunicante , Controle de Doenças Transmissíveis , Pandemias/prevenção & controle
10.
BMC Public Health ; 22(1): 716, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410184

RESUMO

BACKGROUND: The COVID-19 epidemic has differentially impacted communities across England, with regional variation in rates of confirmed cases, hospitalisations and deaths. Measurement of this burden changed substantially over the first months, as surveillance was expanded to accommodate the escalating epidemic. Laboratory confirmation was initially restricted to clinical need ("pillar 1") before expanding to community-wide symptomatics ("pillar 2"). This study aimed to ascertain whether inconsistent measurement of case data resulting from varying testing coverage could be reconciled by drawing inference from COVID-19-related deaths. METHODS: We fit a Bayesian spatio-temporal model to weekly COVID-19-related deaths per local authority (LTLA) throughout the first wave (1 January 2020-30 June 2020), adjusting for the local epidemic timing and the age, deprivation and ethnic composition of its population. We combined predictions from this model with case data under community-wide, symptomatic testing and infection prevalence estimates from the ONS infection survey, to infer the likely trajectory of infections implied by the deaths in each LTLA. RESULTS: A model including temporally- and spatially-correlated random effects was found to best accommodate the observed variation in COVID-19-related deaths, after accounting for local population characteristics. Predicted case counts under community-wide symptomatic testing suggest a total of 275,000-420,000 cases over the first wave - a median of over 100,000 additional to the total confirmed in practice under varying testing coverage. This translates to a peak incidence of around 200,000 total infections per week across England. The extent to which estimated total infections are reflected in confirmed case counts was found to vary substantially across LTLAs, ranging from 7% in Leicester to 96% in Gloucester with a median of 23%. CONCLUSIONS: Limitations in testing capacity biased the observed trajectory of COVID-19 infections throughout the first wave. Basing inference on COVID-19-related mortality and higher-coverage testing later in the time period, we could explore the extent of this bias more explicitly. Evidence points towards substantial under-representation of initial growth and peak magnitude of infections nationally, to which different parts of the country contribute unequally.


Assuntos
COVID-19 , Teorema de Bayes , COVID-19/epidemiologia , Efeitos Psicossociais da Doença , Humanos , Armazenamento e Recuperação da Informação , SARS-CoV-2
12.
Euro Surveill ; 27(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34991776

RESUMO

We estimate the potential remaining COVID-19 hospitalisation and death burdens in 19 European countries by estimating the proportion of each country's population that has acquired immunity to severe disease through infection or vaccination. Our results suggest many European countries could still face high burdens of hospitalisations and deaths, particularly those with lower vaccination coverage, less historical transmission and/or older populations. Continued non-pharmaceutical interventions and efforts to achieve high vaccination coverage are required in these countries to limit severe COVID-19 outcomes.


Assuntos
COVID-19 , Europa (Continente)/epidemiologia , Hospitalização , Humanos , SARS-CoV-2 , Vacinação
13.
Euro Surveill ; 26(39)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34596018

RESUMO

BackgroundTo mitigate SARS-CoV-2 transmission risks from international air travellers, many countries implemented a combination of up to 14 days of self-quarantine upon arrival plus PCR testing in the early stages of the COVID-19 pandemic in 2020.AimTo assess the effectiveness of quarantine and testing of international travellers to reduce risk of onward SARS-CoV-2 transmission into a destination country in the pre-COVID-19 vaccination era.MethodsWe used a simulation model of air travellers arriving in the United Kingdom from the European Union or the United States, incorporating timing of infection stages while varying quarantine duration and timing and number of PCR tests.ResultsQuarantine upon arrival with a PCR test on day 7 plus a 1-day delay for results can reduce the number of infectious arriving travellers released into the community by a median 94% (95% uncertainty interval (UI): 89-98) compared with a no quarantine/no test scenario. This reduction is similar to that achieved by a 14-day quarantine period (median > 99%; 95% UI: 98-100). Even shorter quarantine periods can prevent a substantial amount of transmission; all strategies in which travellers spend at least 5 days (mean incubation period) in quarantine and have at least one negative test before release are highly effective (median reduction 89%; 95% UI: 83-95)).ConclusionThe effect of different screening strategies impacts asymptomatic and symptomatic individuals differently. The choice of an optimal quarantine and testing strategy for unvaccinated air travellers may vary based on the number of possible imported infections relative to domestic incidence.


Assuntos
COVID-19 , SARS-CoV-2 , Vacinas contra COVID-19 , Humanos , Pandemias , Quarentena , Reino Unido/epidemiologia
14.
Curr Biol ; 31(14): 3192-3198.e7, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34089647

RESUMO

The "selfish herd" hypothesis1 provides a potential mechanism to explain a ubiquitous phenomenon in nature: that of non-kin aggregations. Individuals in selfish herds are thought to benefit by reducing their own risk at the expense of conspecifics by attracting toward their neighbors' positions1,2 or central locations in the aggregation.3-5 Alternatively, increased alignment with their neighbors' orientation could reduce the chance of predation through information sharing6-8 or collective escape.6 Using both small and large flocks of homing pigeons (Columba livia; n = 8-10 or n = 27-34 individuals) tagged with 5-Hz GPS loggers and a GPS-tagged, remote-controlled model peregrine falcon (Falco peregrinus), we tested whether individuals increase their use of attraction over alignment when under perceived threat. We conducted n = 27 flights in treatment conditions, chased by the robotic "predator," and n = 16 flights in control conditions (not chased). Despite responding strongly to the RobotFalcon-by turning away from its flight direction-individuals in treatment flocks demonstrated no increased attraction compared with control flocks, and this result held across both flock sizes. We suggest that mutualistic alignment is more advantageous than selfish attraction in groups with a high coincidence of individual and collective interests (adaptive hypothesis). However, we also explore alternative explanations, such as high cognitive demand under threat and collision avoidance (mechanistic hypotheses). We conclude that selfish herd may not be an appropriate paradigm for understanding the function of highly synchronous collective motion, as observed in bird flocks and perhaps also fish shoals and highly aligned mammal aggregations, such as moving herds.


Assuntos
Columbidae , Comportamento Predatório , Comportamento Social , Animais , Falconiformes , Voo Animal , Movimento
15.
BMC Med ; 19(1): 106, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33902581

RESUMO

BACKGROUND: Routine asymptomatic testing using RT-PCR of people who interact with vulnerable populations, such as medical staff in hospitals or care workers in care homes, has been employed to help prevent outbreaks among vulnerable populations. Although the peak sensitivity of RT-PCR can be high, the probability of detecting an infection will vary throughout the course of an infection. The effectiveness of routine asymptomatic testing will therefore depend on testing frequency and how PCR detection varies over time. METHODS: We fitted a Bayesian statistical model to a dataset of twice weekly PCR tests of UK healthcare workers performed by self-administered nasopharyngeal swab, regardless of symptoms. We jointly estimated times of infection and the probability of a positive PCR test over time following infection; we then compared asymptomatic testing strategies by calculating the probability that a symptomatic infection is detected before symptom onset and the probability that an asymptomatic infection is detected within 7 days of infection. RESULTS: We estimated that the probability that the PCR test detected infection peaked at 77% (54-88%) 4 days after infection, decreasing to 50% (38-65%) by 10 days after infection. Our results suggest a substantially higher probability of detecting infections 1-3 days after infection than previously published estimates. We estimated that testing every other day would detect 57% (33-76%) of symptomatic cases prior to onset and 94% (75-99%) of asymptomatic cases within 7 days if test results were returned within a day. CONCLUSIONS: Our results suggest that routine asymptomatic testing can enable detection of a high proportion of infected individuals early in their infection, provided that the testing is frequent and the time from testing to notification of results is sufficiently fast.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Reação em Cadeia da Polimerase/métodos , Teorema de Bayes , COVID-19/patologia , Feminino , Humanos , Masculino
16.
Science ; 372(6538)2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33658326

RESUMO

A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, VOC 202012/01 (lineage B.1.1.7), emerged in southeast England in September 2020 and is rapidly spreading toward fixation. Using a variety of statistical and dynamic modeling approaches, we estimate that this variant has a 43 to 90% (range of 95% credible intervals, 38 to 130%) higher reproduction number than preexisting variants. A fitted two-strain dynamic transmission model shows that VOC 202012/01 will lead to large resurgences of COVID-19 cases. Without stringent control measures, including limited closure of educational institutions and a greatly accelerated vaccine rollout, COVID-19 hospitalizations and deaths across England in the first 6 months of 2021 were projected to exceed those in 2020. VOC 202012/01 has spread globally and exhibits a similar transmission increase (59 to 74%) in Denmark, Switzerland, and the United States.


Assuntos
COVID-19/transmissão , COVID-19/virologia , SARS-CoV-2 , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Número Básico de Reprodução , COVID-19/epidemiologia , COVID-19/mortalidade , Vacinas contra COVID-19 , Criança , Pré-Escolar , Controle de Doenças Transmissíveis , Inglaterra/epidemiologia , Europa (Continente)/epidemiologia , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Mutação , SARS-CoV-2/genética , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/patogenicidade , Índice de Gravidade de Doença , Fatores Socioeconômicos , Estados Unidos/epidemiologia , Carga Viral , Adulto Jovem
17.
Lancet Public Health ; 6(3): e175-e183, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33484644

RESUMO

BACKGROUND: In most countries, contacts of confirmed COVID-19 cases are asked to quarantine for 14 days after exposure to limit asymptomatic onward transmission. While theoretically effective, this policy places a substantial social and economic burden on both the individual and wider society, which might result in low adherence and reduced policy effectiveness. We aimed to assess the merit of testing contacts to avert onward transmission and to replace or reduce the length of quarantine for uninfected contacts. METHODS: We used an agent-based model to simulate the viral load dynamics of exposed contacts, and their potential for onward transmission in different quarantine and testing strategies. We compared the performance of quarantines of differing durations, testing with either PCR or lateral flow antigen (LFA) tests at the end of quarantine, and daily LFA testing without quarantine, against the current 14-day quarantine strategy. We also investigated the effect of contact tracing delays and adherence to both quarantine and self-isolation on the effectiveness of each strategy. FINDINGS: Assuming moderate levels of adherence to quarantine and self-isolation, self-isolation on symptom onset alone can prevent 37% (95% uncertainty interval [UI] 12-56) of onward transmission potential from secondary cases. 14 days of post-exposure quarantine reduces transmission by 59% (95% UI 28-79). Quarantine with release after a negative PCR test 7 days after exposure might avert a similar proportion (54%, 95% UI 31-81; risk ratio [RR] 0·94, 95% UI 0·62-1·24) to that of the 14-day quarantine period, as would quarantine with a negative LFA test 7 days after exposure (50%, 95% UI 28-77; RR 0·88, 0·66-1·11) or daily testing without quarantine for 5 days after tracing (50%, 95% UI 23-81; RR 0·88, 0·60-1·43) if all tests are returned negative. A stronger effect might be possible if individuals isolate more strictly after a positive test and if contacts can be notified faster. INTERPRETATION: Testing might allow for a substantial reduction in the length of, or replacement of, quarantine with a small excess in transmission risk. Decreasing test and trace delays and increasing adherence will further increase the effectiveness of these strategies. Further research is required to empirically evaluate the potential costs (increased transmission risk, false reassurance) and benefits (reduction in the burden of quarantine, increased adherence) of such strategies before adoption as policy. FUNDING: National Institute for Health Research, UK Research and Innovation, Wellcome Trust, EU Horizon 2021, and the Bill & Melinda Gates Foundation.


Assuntos
Teste para COVID-19/métodos , COVID-19/prevenção & controle , Busca de Comunicante , Quarentena , COVID-19/epidemiologia , Humanos , Modelos Teóricos
18.
Lancet Infect Dis ; 21(4): 482-492, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33357518

RESUMO

BACKGROUND: A second wave of COVID-19 cases in autumn, 2020, in England led to localised, tiered restrictions (so-called alert levels) and, subsequently, a second national lockdown. We examined the impact of these tiered restrictions, and alternatives for lockdown stringency, timing, and duration, on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and hospital admissions and deaths from COVID-19. METHODS: We fit an age-structured mathematical model of SARS-CoV-2 transmission to data on hospital admissions and hospital bed occupancy (ISARIC4C/COVID-19 Clinical Information Network, National Health Service [NHS] England), seroprevalence (Office for National Statistics, UK Biobank, REACT-2 study), virology (REACT-1 study), and deaths (Public Health England) across the seven NHS England regions from March 1, to Oct 13, 2020. We analysed mobility (Google Community Mobility) and social contact (CoMix study) data to estimate the effect of tiered restrictions implemented in England, and of lockdowns implemented in Northern Ireland and Wales, in October, 2020, and projected epidemiological scenarios for England up to March 31, 2021. FINDINGS: We estimated a reduction in the effective reproduction number (Rt) of 2% (95% credible interval [CrI] 0-4) for tier 2, 10% (6-14) for tier 3, 35% (30-41) for a Northern Ireland-stringency lockdown with schools closed, and 44% (37-49) for a Wales-stringency lockdown with schools closed. From Oct 1, 2020, to March 31, 2021, a projected COVID-19 epidemic without tiered restrictions or lockdown results in 280 000 (95% projection interval 274 000-287 000) hospital admissions and 58 500 (55 800-61 100) deaths. Tiered restrictions would reduce hospital admissions to 238 000 (231 000-245 000) and deaths to 48 600 (46 400-50 700). From Nov 5, 2020, a 4-week Wales-type lockdown with schools remaining open-similar to the lockdown measures announced in England in November, 2020-was projected to further reduce hospital admissions to 186 000 (179 000-193 000) and deaths to 36 800 (34 900-38 800). Closing schools was projected to further reduce hospital admissions to 157 000 (152 000-163 000) and deaths to 30 300 (29 000-31 900). A projected lockdown of greater than 4 weeks would reduce deaths but would bring diminishing returns in reducing peak pressure on hospital services. An earlier lockdown would have reduced deaths and hospitalisations in the short term, but would lead to a faster resurgence in cases after January, 2021. In a post-hoc analysis, we estimated that the second lockdown in England (Nov 5-Dec 2) reduced Rt by 22% (95% CrI 15-29), rather than the 32% (25-39) reduction estimated for a Wales-stringency lockdown with schools open. INTERPRETATION: Lockdown measures outperform less stringent restrictions in reducing cumulative deaths. We projected that the lockdown policy announced to commence in England on Nov 5, with a similar stringency to the lockdown adopted in Wales, would reduce pressure on the health service and would be well timed to suppress deaths over the winter period, while allowing schools to remain open. Following completion of the analysis, we analysed new data from November, 2020, and found that despite similarities in policy, the second lockdown in England had a smaller impact on behaviour than did the second lockdown in Wales, resulting in more deaths and hospitalisations than we originally projected when focusing on a Wales-stringency scenario for the lockdown. FUNDING: Horizon 2020, UK Medical Research Council, and the National Institute for Health Research.


Assuntos
COVID-19/mortalidade , COVID-19/transmissão , Controle de Doenças Transmissíveis , Hospitalização/estatística & dados numéricos , Modelos Estatísticos , Número Básico de Reprodução , Inglaterra/epidemiologia , Epidemias , Previsões , Número de Leitos em Hospital , Hospitais , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Irlanda do Norte/epidemiologia , SARS-CoV-2/isolamento & purificação , Estudos Soroepidemiológicos , Medicina Estatal , País de Gales/epidemiologia
19.
Lancet Public Health ; 6(1): e12-e20, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33301722

RESUMO

BACKGROUND: Countries have restricted international arrivals to delay the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). These measures carry a high economic and social cost, and might have little effect on COVID-19 epidemics if there are many more cases resulting from local transmission compared with imported cases. Our study aims to investigate the extent to which imported cases contribute to local transmission under different epidemic conditions. METHODS: To inform decisions about international travel restrictions, we calculated the ratio of expected COVID-19 cases from international travel (assuming no travel restrictions) to expected cases arising from internal spread, expressed as a proportion, on an average day in May and September, 2020, in each country. COVID-19 prevalence and incidence were estimated using a modelling framework that adjusts reported cases for under-ascertainment and asymptomatic infections. We considered different travel scenarios for May and September, 2020: an upper bound with estimated travel volumes at the same levels as May and September, 2019, and a lower bound with estimated travel volumes adjusted downwards according to expected reductions in May and September, 2020. Results were interpreted in the context of local epidemic growth rates. FINDINGS: In May, 2020, imported cases are likely to have accounted for a high proportion of total incidence in many countries, contributing more than 10% of total incidence in 102 (95% credible interval 63-129) of 136 countries when assuming no reduction in travel volumes (ie, with 2019 travel volumes) and in 74 countries (33-114) when assuming estimated 2020 travel volumes. Imported cases in September, 2020, would have accounted for no more than 10% of total incidence in 106 (50-140) of 162 countries and less than 1% in 21 countries (4-71) when assuming no reductions in travel volumes. With estimated 2020 travel volumes, imported cases in September, 2020, accounted for no more than 10% of total incidence in 125 countries (65-162) and less than 1% in 44 countries (8-97). Of these 44 countries, 22 (2-61) had epidemic growth rates far from the tipping point of exponential growth, making them the least likely to benefit from travel restrictions. INTERPRETATION: Countries can expect travellers infected with SARS-CoV-2 to arrive in the absence of travel restrictions. Although such restrictions probably contribute to epidemic control in many countries, in others, imported cases are likely to contribute little to local COVID-19 epidemics. Stringent travel restrictions might have little impact on epidemic dynamics except in countries with low COVID-19 incidence and large numbers of arrivals from other countries, or where epidemics are close to tipping points for exponential growth. Countries should consider local COVID-19 incidence, local epidemic growth, and travel volumes before implementing such restrictions. FUNDING: Wellcome Trust, UK Foreign, Commonwealth & Development Office, European Commission, National Institute for Health Research, Medical Research Council, and Bill & Melinda Gates Foundation.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Doenças Transmissíveis Importadas/epidemiologia , Epidemias , Internacionalidade , COVID-19/prevenção & controle , Doenças Transmissíveis Importadas/prevenção & controle , Humanos , Modelos Teóricos , Viagem/legislação & jurisprudência
20.
BMC Med ; 18(1): 332, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33087179

RESUMO

BACKGROUND: Asymptomatic or subclinical SARS-CoV-2 infections are often unreported, which means that confirmed case counts may not accurately reflect underlying epidemic dynamics. Understanding the level of ascertainment (the ratio of confirmed symptomatic cases to the true number of symptomatic individuals) and undetected epidemic progression is crucial to informing COVID-19 response planning, including the introduction and relaxation of control measures. Estimating case ascertainment over time allows for accurate estimates of specific outcomes such as seroprevalence, which is essential for planning control measures. METHODS: Using reported data on COVID-19 cases and fatalities globally, we estimated the proportion of symptomatic cases (i.e. any person with any of fever ≥ 37.5 °C, cough, shortness of breath, sudden onset of anosmia, ageusia or dysgeusia illness) that were reported in 210 countries and territories, given those countries had experienced more than ten deaths. We used published estimates of the baseline case fatality ratio (CFR), which was adjusted for delays and under-ascertainment, then calculated the ratio of this baseline CFR to an estimated local delay-adjusted CFR to estimate the level of under-ascertainment in a particular location. We then fit a Bayesian Gaussian process model to estimate the temporal pattern of under-ascertainment. RESULTS: Based on reported cases and deaths, we estimated that, during March 2020, the median percentage of symptomatic cases detected across the 84 countries which experienced more than ten deaths ranged from 2.4% (Bangladesh) to 100% (Chile). Across the ten countries with the highest number of total confirmed cases as of 6 July 2020, we estimated that the peak number of symptomatic cases ranged from 1.4 times (Chile) to 18 times (France) larger than reported. Comparing our model with national and regional seroprevalence data where available, we find that our estimates are consistent with observed values. Finally, we estimated seroprevalence for each country. As of 7 June, our seroprevalence estimates range from 0% (many countries) to 13% (95% CrI 5.6-24%) (Belgium). CONCLUSIONS: We found substantial under-ascertainment of symptomatic cases, particularly at the peak of the first wave of the SARS-CoV-2 pandemic, in many countries. Reported case counts will therefore likely underestimate the rate of outbreak growth initially and underestimate the decline in the later stages of an epidemic. Although there was considerable under-reporting in many locations, our estimates were consistent with emerging serological data, suggesting that the proportion of each country's population infected with SARS-CoV-2 worldwide is generally low.


Assuntos
Infecções por Coronavirus/epidemiologia , Pandemias , Pneumonia Viral/epidemiologia , Teorema de Bayes , Betacoronavirus , COVID-19 , Humanos , SARS-CoV-2 , Estudos Soroepidemiológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...