Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(31): 21600-21611, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39052081

RESUMO

We introduce a nonclassical model for nanocrystal nucleation in solution which centers on the dynamic interplay of chemical bond breakage and formation coupled with the desolvation of precursor molecules, which we term the molecular chemistry (MC) model. Departing from classical theory, our model employs the bond count as the key variable rather than particle size, thereby redefining the role of supersaturation and its role in determining the so-called critical nucleus size. We apply the model to CdSe nanocrystal formation in nonpolar solvents and showcase its efficacy in predicting solvent dynamics, precursor characteristics, crystal phase, stoichiometry, "magic number" behavior, and transition states. While the coupled-cluster method is used to determine the bond energy, we show that it is possible to derive reaction pathways by reducing the calculations to algebraic approximations for the nucleation energy. This singular set of bond energy parameters allows nanocrystal nucleation and growth to be conceptualized as a straightforward chemical reaction.

2.
ACS Nano ; 18(22): 14176-14186, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38768371

RESUMO

Two-dimensional (2D) organic-inorganic metal halide perovskites have gained immense attention as alternatives to three-dimensional (3D) perovskites in recent years. The hydrophobic spacers in the layered structure of 2D perovskites make them more moisture-resistant than 3D perovskites. Moreover, they exhibit unique anisotropic electrical transport properties due to a structural confinement effect. In this study, four lead-free Dion-Jacobson (DJ) Sn-based phase perovskite single crystals, 3AMPSnI4, 4AMPSnI4, 3AMPYSnI4, and 4AMPYSnI4 [AMP = (aminomethyl)-piperidinium, AMPY = (aminomethyl)pyridinium] are reported. Results reveal structural differences between them impacting the resulting optical properties. Namely, higher octahedron distortion results in a higher absorption edge. Density functional theory (DFT) is also performed to determine the trends in energy band diagrams, exciton binding energies, and formation energies due to structural differences among the four single crystals. Finally, a field-effect transistor (FET) based on 4AMPSnI4 is demonstrated with a respectable hole mobility of 0.57 cm2 V-1 s-1 requiring a low threshold voltage of only -2.5 V at a drain voltage of -40 V. To the best of our knowledge, this is the third DJ-phase perovskite FET reported to date.

3.
Adv Sci (Weinh) ; 11(26): e2400147, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38704677

RESUMO

Crystallization of alloys from a molten state is a fundamental process underpinning metallurgy. Here the direct imaging of an intermetallic precipitation reaction at equilibrium in a liquid-metal environment is demonstrated. It is shown that the outer layers of a solidified intermetallic are surprisingly unstable to the depths of several nanometers, fluctuating between a crystalline and a liquid state. This effect, referred to herein as crystal interface liquefaction, is observed at remarkably low temperatures and results in highly unstable crystal interfaces at temperatures exceeding 200 K below the bulk melting point of the solid. In general, any liquefaction process would occur at or close to the formal melting point of a solid, thus differentiating the observed liquefaction phenomenon from other processes such as surface pre-melting or conventional bulk melting. Crystal interface liquefaction is observed in a variety of binary alloy systems and as such, the findings may impact the understanding of crystallization and solidification processes in metallic systems and alloys more generally.

4.
Adv Mater ; 36(30): e2403885, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38739417

RESUMO

Low-melting liquid metals are emerging as a new group of highly functional solvents due to their capability to dissolve and alloy various metals in their elemental state to form solutions as well as colloidal systems. Furthermore, these liquid metals can facilitate and catalyze multiple unique chemical reactions. Despite the intriguing science behind liquid metals and alloys, very little is known about their fundamental structures in the nanometric regime. To bridge this gap, this work employs small angle neutron scattering and molecular dynamics simulations, revealing that the most commonly used liquid metal solvents, EGaIn and Galinstan, are surprisingly structured with the formation of clusters ranging from 157 to 15.7 Å. Conversely, noneutectic liquid metal alloys of GaSn or GaIn at low solute concentrations of 1, 2, and 5 wt%, as well as pure Ga, do not exhibit these structures. Importantly, the eutectic alloys retain their structure even at elevated temperatures of 60 and 90 °C, highlighting that they are not just simple homogeneous fluids consisting of individual atoms. Understanding the complex soft structure of liquid alloys will assist in comprehending complex phenomena occurring within these fluids and contribute to deriving reaction mechanisms in the realm of synthesis and liquid metal-based catalysis.

5.
ACS Appl Mater Interfaces ; 16(7): 8707-8716, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38346080

RESUMO

Two-dimensional (2D) metal organic framework (MOF) or metalloporphyrin nanosheets with a stable metal-N4 complex unit present the metal as a single-atom catalyst dispersed in the 2D porphyrin framework. First-principles calculations on the 3d-transition metals in M-TCPP are investigated in this study for their surface-dependent electronic properties including work function and d-band center. Crystal orbital Hamiltonian population (-pCOHP) analysis highlights a higher contribution of the bonding state in the M-N bond and antibonding state in the N-N bond to be essential for N-N bond activation. A linear relationship between ΔGmax and surface electronic properties, N-N bond strength, and Bader charge has been found to influence the rate-determining potential for nitrogen reduction reaction (NRR) in M-TCPP MOFs. 2D Ti-TCPP MOF, with a kinetic energy barrier of 1.43 eV in the final protonation step of enzymatic NRR, shows exclusive NRR selectivity over competing hydrogen reduction (HER) and nitrogenous compounds (NO and NO2). Thus, Ti-TCPP MOF with an NRR limiting potential of -0.35 V in water solvent is proposed as an attractive candidate for electrocatalytic NRR.

6.
Small ; 20(27): e2307807, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38342673

RESUMO

Sodium (Na) doping is a well-established technique employed in chalcopyrite and kesterite solar cells. While various improvements can be achieved in crystalline quality, electrical properties, or defect passivation of the absorber materials by incorporating Na, a comprehensive demonstration of the desired Na distribution in CZTSSe is still lacking. Herein, a straightforward Na doping approach by dissolving NaCl into the CZTS precursor solution is proposed. It is demonstrated that a favorable Na ion distribution should comprise a precisely controlled Na+ concentration at the front surface and an enhanced distribution within the bottom region of the absorber layer. These findings demonstrated that Na ions play several positive roles within the device, leading to an overall power conversion efficiency of 12.51%.

7.
Small ; 20(27): e2309924, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38263808

RESUMO

The emergence of ferroelectricity in two-dimensional (2D) metal oxides is a topic of significant technological interest; however, many 2D metal oxides lack intrinsic ferroelectric properties. Therefore, introducing asymmetry provides access to a broader range of 2D materials within the ferroelectric family. Here, the generation of asymmetry in 2D SnO by doping the material with Hf0.5Zr0.5O2 (HZO) is demonstrated. A liquid metal process as a doping strategy for the preparation of 2D HZO-doped SnO with robust ferroelectric characteristics is implemented. This technology takes advantage of the selective interface enrichment of molten Sn with HZO crystallites. Molecular dynamics simulations indicate a strong tendency of Hf and Zr atoms to migrate toward the surface of liquid metal and embed themselves within the growing oxide layer in the form of HZO. Thus, the liquid metal-based harvesting/doping technique is a feasible approach devised for producing novel 2D metal oxides with induced ferroelectric properties, represents a significant development for the prospects of random-access memories.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA