RESUMO
BACKGROUND: Cannabinoid receptor 1 has its crystallographic structure available in complex with agonists and inverse agonists, which paved the way to establish an understanding of the structural basis of interactions with ligands. Dipyrone is a prodrug with analgesic capabilities and is widely used in some countries. Recently some evidence of a dipyrone metabolite acting over the Cannabinoid Receptor 1has been shown. OBJECTIVE: Our goal here is to explore the dipyrone metabolite 4-aminoantipyrine as a Cannabinoid Receptor 1 agonist, reviewing dipyrone characteristics, and investigating the structural basis for its interaction with the Cannabinoid Receptor 1. METHOD: We reviewed here recent functional studies related to the dipyrone metabolite focusing on its action as a Cannabinoid Receptor 1 agonist. We also analyzed protein-ligand interactions for this complex obtained through docking simulations against the crystallographic structure of the Cannabinoid Receptor 1. RESULTS: Analysis of the crystallographic structure and docking simulations revealed that most of the interactions present in the docked pose were also present in the crystallographic structure of Cannabinoid Receptor 1 and agonist. CONCLUSION: Analysis of the complex of 4-aminoantipyrine and Cannabinoid Receptor 1 revealed the pivotal role played by residues Phe 170, Phe 174, Phe 177, Phe 189, Leu 193, Val 196, and Phe 379, besides the conserved hydrogen bond at Ser 383. The mechanistic analysis and the present computational study suggest that the dipyrone metabolite 4-aminoantipyrine interacts with the Cannabinoid Receptor 1.
Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Ampirona , Analgésicos , Canabinoides , DipironaRESUMO
BACKGROUND: Cannabinoid Receptor 1 (CB1) is a membrane protein prevalent in the central nervous system, whose crystallographic structure has recently been solved. Studies will be needed to investigate CB1 complexes with its ligands and its role in the development of new drugs. OBJECTIVE: Our goal here is to review the studies on CB1, starting with general aspects and focusing on the recent structural studies, with emphasis on the inverse agonists bound structures. METHODS: We start with a literature review, and then we describe recent studies on CB 1 crystallographic structure and docking simulations. We use this structural information to depict protein-ligand interactions. We also describe the molecular docking method to obtain complex structures of CB 1 with inverse agonists. RESULTS: Analysis of the crystallographic structure and docking results revealed the residues responsible for the specificity of the inverse agonists for CB 1. Most of the intermolecular interactions involve hydrophobic residues, with the participation of the residues Phe 170 and Leu 359 in all complex structures investigated in the present study. For the complexes with otenabant and taranabant, we observed intermolecular hydrogen bonds involving residues His 178 (otenabant) and Thr 197 and Ser 383 (taranabant). CONCLUSION: Analysis of the structures involving inverse agonists and CB 1 revealed the pivotal role played by residues Phe 170 and Leu 359 in their interactions and the strong intermolecular hydrogen bonds highlighting the importance of the exploration of intermolecular interactions in the development of novel inverse agonists.