Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 376, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191461

RESUMO

Extant cicada (Hemiptera: Cicadoidea) includes widely distributed Cicadidae and relictual Tettigarctidae, with fossils ascribed to these two groups based on several distinct, minimally varying morphological differences that define their extant counterparts. However, directly assigning Mesozoic fossils to modern taxa may overlook the role of unique and transitional features provided by fossils in tracking their early evolutionary paths. Here, based on adult and nymphal fossils from mid-Cretaceous Kachin amber of Myanmar, we explore the phylogenetic relationships and morphological disparities of fossil and extant cicadoids. Our results suggest that Cicadidae and Tettigarctidae might have diverged at or by the Middle Jurassic, with morphological evolution possibly shaped by host plant changes. The discovery of tymbal structures and anatomical analysis of adult fossils indicate that mid-Cretaceous cicadas were silent as modern Tettigarctidae or could have produced faint tymbal-related sounds. The discovery of final-instar nymphal and exuviae cicadoid fossils with fossorial forelegs and piercing-sucking mouthparts indicates that they had most likely adopted a subterranean lifestyle by the mid-Cretaceous, occupying the ecological niche of underground feeding on root. Our study traces the morphological, behavioral, and ecological evolution of Cicadoidea from the Mesozoic, emphasizing their adaptive traits and interactions with their living environments.


Assuntos
Hemípteros , Animais , Filogenia , Âmbar , Ecossistema , Membro Anterior , Ninfa
2.
J Microsc ; 290(3): 168-177, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37060298

RESUMO

Leaves of the majority of plants contain calcium oxalate (CaOx) crystals or druses which often occur in spectacular distribution patterns. Numerous studies on CaOx in plant tissues across many different plant groups have been published, since it can be visualised readily under a light microscope (LM). However, there is surprisingly limited knowledge on the actual, precise distribution of CaOx in the leaves of quite ordinary plants such as common native and exotic trees. Traditional sample preparation for the documentation of the distribution of CaOx crystals in a given sample - including overall distribution - requires time-consuming clearing procedures. Here we present a refined fast preparation method to visualise the overall CaOx complement in a sample: The plant material is ashed and the ash viewed under the polarising microscope. This is a rapid method which overcomes many shortcomings of other methods and permits the visualisation of the entire CaOx content in most leaf samples. Pros and cons in comparison with the conventional clearing technique are discussed. Further aspects for CaOx investigations by micro-CT and scanning electron microscopy are discussed.


Assuntos
Oxalato de Cálcio , Folhas de Planta , Oxalato de Cálcio/análise , Oxalato de Cálcio/química , Cristalização , Microscopia Eletrônica de Varredura , Computadores
3.
PLoS One ; 18(2): e0280797, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36724176

RESUMO

The platy limestone deposit of Vallecillo in northeastern Mexico is dated to the early-middle Turonian (Late Cretaceous) and known to contain a variety of well-preserved vertebrate fossils. One of the most common fish species is the teleost Tselfatia formosa. A review of 149 individuals reveals the presence of two types of body shapes (diamond-shaped and torpedo-shaped individuals) which is interpreted as sexual shape dimorphism (SSD). A unimodal size distribution illustrates a dominance of diamond-shaped specimens, but both body shape types are present in small (young) and big sized (old) individuals. The abundance of well-articulated and complete specimens suggests that T. formosa populated deep levels of the water column, which excluded buoyancy and flotation as well as carcass disintegration near the surface. The reconstruction of the dorsal and anal fins suggests the presence of a membrane between each fin ray and allows for ecological comparison of T. formosa with modern fan fishes.


Assuntos
Peixes , Paleontologia , Animais , Fósseis , México , Taiwan
4.
Sci Rep ; 13(1): 1539, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707669

RESUMO

Fossilization processes and especially the role of bacterial activity during the preservation of organic material has not yet been well understood. Here, we report the results of controlled taphonomic experiments with crayfish in freshwater and sediment. 16S rRNA amplicon analyzes showed that the development of the bacterial community composition over time was correlated with different stages of decay and preservation. Three dominating genera, Aeromonas, Clostridium and Acetobacteroides were identified as the main drivers in the decomposition of crayfish in freshwater. Using micro-computed tomography (µ-CT), scanning electron microscopy (SEM) and confocal Raman spectroscopy (CRS), calcite clusters were detected after 3-4 days inside crayfish carcasses during their decomposition in freshwater at 24 °C. The precipitation of calcite clusters during the decomposition process was increased in the presence of the bacterial genus Proteocatella. Consequently, Proteocatella might be one of the bacterial genera responsible for fossilization.


Assuntos
Astacoidea , Água Doce , Animais , Astacoidea/genética , RNA Ribossômico 16S/genética , Microtomografia por Raio-X , Bactérias/genética , Carbonato de Cálcio
5.
Sci Rep ; 12(1): 15959, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153396

RESUMO

Calcium oxalate (CaOx) is one of the most common bio-mineral in extant plants and is believed to serve a variety of functions such as calcium storage and herbivore defense. However, traces of CaOx crystals have rarely been identified in fossil plants, and they are primarily known from fossil gymnosperms, where empty cavities of former CaOx crystals or ghost crystals have been reported from leaf cuticles of some Late Cretaceous and Cenozoic conifers. Here we investigate fossil angiosperm leaves from the late Oligocene Rott Fossil Lagerstätte and report ghost crystals of various shapes, sizes and topology (distribution patterns), and cavities. These micromorphological structures of fossil leaves are compared to CaOx deposits in leaves of extant plants: globular structures in fossil leaves resemble CaOx druses (crystal aggregates) in fresh leaves in size and distribution; and angular or brick-shaped structures in the vascular system of fossil leaves closely resemble prismatic CaOx crystals in the vascular system of extant leaves in both size and topology. Chemically, CaOx druses have survived fossilization as cavities only, and were replaced by organic matter and ghost minerals containing Ca, Si, Al, S, and Fe. The identification of former CaOx remains in leaf fossils provides novel insights on the fate of plant bio-minerals during fossilization. More importantly, it provides an additional aspect of the ecophysiology of fossil plants thus improving the accuracy of palaeoecological reconstructions and can provide a broader perspective on the evolution of CaOx and their rule in plant ecology across geological timescales. Alternative interpretations of the fossil microstructures are discussed but ruled out.


Assuntos
Oxalato de Cálcio , Fósseis , Biomineralização , Cálcio , Oxalato de Cálcio/química , Cristalização , Minerais , Folhas de Planta , Plantas
6.
Sci Rep ; 12(1): 10122, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710834

RESUMO

The preservation of soft tissue in the fossil record is mostly due to the replacement of organic structures by minerals (e.g. calcite, aragonite or apatite) called pseudomorphs. In rare cases soft tissues were preserved by pyrite. We assume that adipocere, as the shaping component, might be a preliminary stage in the pyritisation of soft tissues under anaerobic conditions. Using high-performance liquid chromatography coupled to ultraviolet and mass spectrometric detection (HPLC-UV/MS) and confocal Raman spectroscopy (CRS) we were able to demonstrate the transformation of the hepatopancreas (digestive gland) of the crayfish Cambarellus diminutus [Hobbs 1945] into adipocere within only 9 days, just inside a biofilm. Microorganisms (bacteria and fungi) which were responsible for the biofilm (Sphaerotilus [Kutzig 1833] and Pluteus [Fries 1857]) and maybe the adipocere formation (Clostridium [Prazmowski 1880]) were detected by 16S rRNA gene amplicon sequencing. Furthermore, micro-computed tomography (µ-CT) analyses revealed a precipitation of calcite and further showed that in animals with biofilm formation calcite precipitates in finer grained crystals than in individuals without biofilm formation, and that the precipitates were denser and replicated the structures of the cuticles better than the coarse precipitates.


Assuntos
Biofilmes , Mudanças Depois da Morte , Animais , Carbonato de Cálcio , RNA Ribossômico 16S/genética , Preservação de Tecido , Microtomografia por Raio-X
7.
Geobiology ; 20(3): 363-376, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35212124

RESUMO

Fossilized tree resin, or amber, commonly contains fossils of animals, plants and microorganisms. These inclusions have generally been interpreted as hollow moulds or mummified remains coated or filled with carbonaceous material. Here, we provide the first report of calcified and silicified insects in amber from the mid-Cretaceous Kachin (Burmese) amber. Data from light microscopy, scanning electron microscopy (SEM), energy-dispersive and wavelength-dispersive X-ray spectroscopy (EDX and WDX), X-ray micro-computed tomography (Micro-CT) and Raman spectroscopy show that these Kachin fossils owe their preservation to multiple diagenetic mineralization processes. The labile tissues (e.g. eyes, wings and trachea) mainly consist of calcite, chalcedony and quartz with minor amounts of carbonaceous material, pyrite, iron oxide and phyllosilicate minerals. Calcite, quartz and chalcedony also occur in cracks as void-filling cements, indicating that the minerals formed from chemical species that entered the fossil inclusions through cracks in the resin. The results demonstrate that resin and amber are not always closed systems. Fluids (e.g. sediment pore water, diagenetic fluid and ground water) at different burial stages have chances to interact with amber throughout its geological history and affect the preservational quality and morphological fidelity of its fossil inclusions.


Assuntos
Âmbar , Quartzo , Âmbar/química , Animais , Carbonato de Cálcio , Fósseis , Insetos , Microtomografia por Raio-X
8.
Biol Rev Camb Philos Soc ; 97(2): 449-465, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34649299

RESUMO

Bacteria play an important role in the fossilization of soft tissues; their metabolic activities drive the destruction of the tissues and also strongly influence mineralization. Some environmental conditions, such as anoxia, cold temperatures, and high salinity, are considered widely to promote fossilization by modulating bacterial activity. However, bacteria are extremely diverse, and have developed metabolic adaptations to a wide range of stressful conditions. Therefore, the influence of the environment on bacterial activity, and of their metabolic activity on fossilization, is complex. A number of examples illustrate that simple, general assumptions about the role of bacteria in soft tissue fossilization cannot explain all preservational pathways: (i) experimental results show that soft tissues of cnidaria decay less in oxic than anoxic conditions, and in the fossil record are found more commonly in fossil sites deposited under oxic conditions rather than anoxic environments; (ii) siderite concretions, which often entomb soft tissue fossils, precipitate due to a complex mixture of sulfate- and iron reduction by some bacterial species, running counter to original theories that iron reduction is the primary driver of siderite concretion growth; (iii) arthropod brains, now widely accepted to be preserved in many Cambrian fossil sites, are one of the first structures to decay in taphonomic experiments, indicating that their fossilization processes are complex and influenced by bacterial activity. In order to expand our understanding of the complex process of bacterially driven soft tissue fossilization, more research needs to be done, on fossils themselves and in taphonomic experiments, to determine how the complex variation in microbial metabolic activity influences decay and mineralization.


Assuntos
Artrópodes , Fósseis , Animais , Bactérias , Ferro
9.
iScience ; 24(11): 103324, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34805787

RESUMO

Dragonflies and damselflies are among the earliest flying insects with extant representatives. However, unraveling details of their long evolutionary history, such as egg laying (oviposition) strategies, is impeded by unresolved phylogenetic relationships, particularly in damselflies. Here we present a transcriptome-based phylogenetic reconstruction of Odonata, analyzing 2,980 protein-coding genes in 105 species representing nearly all the order's families. All damselfly and most dragonfly families are recovered as monophyletic. Our data suggest a sister relationship between dragonfly families of Gomphidae and Petaluridae. According to our divergence time estimates, both crown-Zygoptera and -Anisoptera arose during the late Triassic. Egg-laying with a reduced ovipositor apparently evolved in dragonflies during the late Jurassic/early Cretaceous. Lastly, we also test the impact of fossil choice and placement, particularly, of the extinct fossil species, †Triassolestodes asiaticus, and †Proterogomphus renateae on divergence time estimates. We find placement of †Proterogomphus renateae to be much more impactful than †Triassolestodes asiaticus.

11.
Sci Rep ; 10(1): 16854, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033283

RESUMO

The monospecific family Mysteriomorphidae was recently described based on two fossil specimens from the Late Cretaceous Kachin amber of northern Myanmar. The family was placed in Elateriformia incertae sedis without a clear list of characters that define it either in Elateroidea or in Byrrhoidea. We report here four additional adult specimens of the same lineage, one of which was described using a successful reconstruction from a CT-scan analysis to better observe some characters. The new specimens enabled us to considerably improve the diagnosis of Mysteriomorphidae. The family is definitively placed in Elateroidea, and we hypothesize its close relationship with Elateridae. Similarly, there are other fossil families of beetles that are exclusively described from Cretaceous ambers. These lineages may have been evolutionarily replaced by the ecological revolution launched by angiosperms that introduced new co-associations with taxa. These data indicate a macroevolutionary pattern of replacement that could be extended to other insect groups.


Assuntos
Besouros/anatomia & histologia , Cycadopsida/parasitologia , Magnoliopsida/parasitologia , Paleontologia/métodos , Âmbar , Animais , Evolução Biológica , Besouros/classificação , Fósseis , Interações Hospedeiro-Parasita , Mianmar , Tomografia Computadorizada por Raios X
12.
PLoS One ; 15(9): e0239521, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32986737

RESUMO

Past claims have been made for fossil DNA recovery from various organisms (bacteria, plants, insects and mammals, including humans) dating back in time from thousands to several million years BP. However, many of these recoveries, especially those described from million-year-old amber (fossil resin), have faced criticism as being the result of modern environmental contamination and for lack of reproducibility. Using modern genomic techniques, DNA can be obtained with confidence from a variety of substrates (e.g. bones, teeth, gum, museum specimens and fossil insects) of different ages, albeit always less than one million years BP, and results can also be obtained from much older materials using palaeoproteomics. Nevertheless, new attempts to determine if ancient DNA (aDNA) is present in insects preserved in 40 000-year old sub-fossilised resin, the precursor of amber, have been unsuccessful or not well documented. Resin-embedded specimens are therefore regarded as unsuitable for genetic studies. However, we demonstrate here, for the first time, that although a labile molecule, DNA is still present in platypodine beetles (Coleoptera: Curculionidae) embedded in six-year-old and two-year-old resin pieces from Hymenaea verrucosa (Angiospermae: Fabaceae) collected in Madagascar. We describe an optimised method which meets all the requirements and precautions for aDNA experiments for our purpose: to explore the DNA preservation limits in resin. Our objective is far from starting an uncontrolled search for aDNA in amber as it was in the past, but to start resolving basic aspects from the DNA preservation in resin and search from the most modern samples to the ancient ones, step by step. We conclude that it is therefore possible to study genomics from resin-embedded organisms, although the time limits remain to be determined.


Assuntos
DNA Antigo/química , Resinas Vegetais/química , Âmbar/química , Animais , Besouros/genética , Fósseis , Hymenaea/química , Insetos/genética , Madagáscar , Reprodutibilidade dos Testes
13.
BMC Evol Biol ; 20(1): 64, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493355

RESUMO

BACKGROUND: The latest advancements in DNA sequencing technologies have facilitated the resolution of the phylogeny of insects, yet parts of the tree of Holometabola remain unresolved. The phylogeny of Neuropterida has been extensively studied, but no strong consensus exists concerning the phylogenetic relationships within the order Neuroptera. Here, we assembled a novel transcriptomic dataset to address previously unresolved issues in the phylogeny of Neuropterida and to infer divergence times within the group. We tested the robustness of our phylogenetic estimates by comparing summary coalescent and concatenation-based phylogenetic approaches and by employing different quartet-based measures of phylogenomic incongruence, combined with data permutations. RESULTS: Our results suggest that the order Raphidioptera is sister to Neuroptera + Megaloptera. Coniopterygidae is inferred as sister to all remaining neuropteran families suggesting that larval cryptonephry could be a ground plan feature of Neuroptera. A clade that includes Nevrorthidae, Osmylidae, and Sisyridae (i.e. Osmyloidea) is inferred as sister to all other Neuroptera except Coniopterygidae, and Dilaridae is placed as sister to all remaining neuropteran families. Ithonidae is inferred as the sister group of monophyletic Myrmeleontiformia. The phylogenetic affinities of Chrysopidae and Hemerobiidae were dependent on the data type analyzed, and quartet-based analyses showed only weak support for the placement of Hemerobiidae as sister to Ithonidae + Myrmeleontiformia. Our molecular dating analyses suggest that most families of Neuropterida started to diversify in the Jurassic and our ancestral character state reconstructions suggest a primarily terrestrial environment of the larvae of Neuropterida and Neuroptera. CONCLUSION: Our extensive phylogenomic analyses consolidate several key aspects in the backbone phylogeny of Neuropterida, such as the basal placement of Coniopterygidae within Neuroptera and the monophyly of Osmyloidea. Furthermore, they provide new insights into the timing of diversification of Neuropterida. Despite the vast amount of analyzed molecular data, we found that certain nodes in the tree of Neuroptera are not robustly resolved. Therefore, we emphasize the importance of integrating the results of morphological analyses with those of sequence-based phylogenomics. We also suggest that comparative analyses of genomic meta-characters should be incorporated into future phylogenomic studies of Neuropterida.


Assuntos
Evolução Molecular , Holometábolos/genética , Filogenia , Animais , Sequência de Bases , Genômica , Larva/genética , Análise de Sequência de DNA , Transcriptoma
14.
iScience ; 23(3): 100913, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32191877

RESUMO

The Cretaceous fossil record of amber provides a variety of evidence that is essential for greater understanding of early pollination strategies. Here, we describe four pieces of ca. 99-million-year-old (early Cenomanian) Myanmar amber from Kachin containing four closely related genera of short-winged flower beetles (Coleoptera: Kateretidae) associated with abundant pollen grains identified as three distinct palynomorphotypes of the gymnosperm Cycadopites and Praenymphaeapollenites cenomaniensis gen. and sp. nov., a form-taxon of pollen from a basal angiosperm lineage of water lilies (Nymphaeales: Nymphaeaceae). We demonstrate how a gymnosperm to angiosperm plant-host shift occurred during the mid-Cretaceous, from a generalist pollen-feeding family of beetles, which served as a driving mechanism for the subsequent success of flowering plants.

15.
PLoS One ; 15(2): e0228843, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32101553

RESUMO

Vertebrate fossils embedded in amber represent a particularly valuable paleobiological record as amber is supposed to be a barrier to the environment, precluding significant alteration of the animals' body over geological time. The mode and processes of amber preservation are still under debate, and it is questionable to what extent original material may be preserved. Due to their high value, vertebrates in amber have never been examined with analytical methods, which means that the composition of bone tissue in amber is unknown. Here, we report our results of a study on a left forelimb from a fossil Anolis sp. indet. (Squamata) that was fully embedded in Miocene Dominican amber. Our results show a transformation of the bioapatite to fluorapatite associated with a severe alteration of the collagen phase and the formation of an unidentified carbonate. These findings argue for a poor survival potential of macromolecules in Dominican amber fossils.


Assuntos
Âmbar , Osso e Ossos/metabolismo , Fluoretação , Lagartos , Animais , Fósseis
16.
Proc Biol Sci ; 286(1895): 20182076, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30963947

RESUMO

Phylogenetic relationships among subgroups of cockroaches and termites are still matters of debate. Their divergence times and major phenotypic transitions during evolution are also not yet settled. We addressed these points by combining the first nuclear phylogenomic study of termites and cockroaches with a thorough approach to divergence time analysis, identification of endosymbionts, and reconstruction of ancestral morphological traits and behaviour. Analyses of the phylogenetic relationships within Blattodea robustly confirm previously uncertain hypotheses such as the sister-group relationship between Blaberoidea and remaining Blattodea, and Lamproblatta being the closest relative to the social and wood-feeding Cryptocercus and termites. Consequently, we propose new names for various clades in Blattodea: Cryptocercus + termites = Tutricablattae; Lamproblattidae + Tutricablattae = Kittrickea; and Blattoidea + Corydioidea = Solumblattodea. Our inferred divergence times contradict previous studies by showing that most subgroups of Blattodea evolved in the Cretaceous, reducing the gap between molecular estimates of divergence times and the fossil record. On a phenotypic level, the blattodean ground-plan is for egg packages to be laid directly in a hole while other forms of oviposition, including ovovivipary and vivipary, arose later. Finally, other changes in egg care strategy may have allowed for the adaptation of nest building and other novelties.


Assuntos
Baratas/classificação , Isópteros/classificação , Filogenia , Animais , Evolução Biológica , Baratas/genética , Isópteros/genética
17.
Nat Commun ; 9(1): 3325, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154438

RESUMO

About 50% of all animal species are considered parasites. The linkage of species diversity to a parasitic lifestyle is especially evident in the insect order Hymenoptera. However, fossil evidence for host-parasitoid interactions is extremely rare, rendering hypotheses on the evolution of parasitism assumptive. Here, using high-throughput synchrotron X-ray microtomography, we examine 1510 phosphatized fly pupae from the Paleogene of France and identify 55 parasitation events by four wasp species, providing morphological and ecological data. All species developed as solitary endoparasitoids inside their hosts and exhibit different morphological adaptations for exploiting the same hosts in one habitat. Our results allow systematic and ecological placement of four distinct endoparasitoids in the Paleogene and highlight the need to investigate ecological data preserved in the fossil record.


Assuntos
Adaptação Fisiológica , Dípteros/parasitologia , Fósseis/diagnóstico por imagem , Interações Hospedeiro-Parasita/fisiologia , Vespas/fisiologia , Animais , Evolução Biológica , França , Filogenia , Pupa/parasitologia , Microtomografia por Raio-X
18.
PeerJ ; 5: e3313, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28533964

RESUMO

One new genus and three new species of Lygistorrhinidae in early Eocene Cambay amber from India are described, which significantly increases our knowledge about this group in the Eocene. Lygistorrhina indica n. sp. is the oldest fossil known from this extant genus. Indorrhina sahnii n. gen. et sp. shows morphological similarities to each of the two extant genera Lygistorrhina and Asiorrhina. Palaeognoriste orientale is the third species known from a group that has only been recorded from Eocene Baltic amber before. The latter finding reveals faunal links between Cambay amber and the probably slightly younger Baltic amber, adding further evidence that faunal exchange between Europe/Asia and India took place before the formation of Cambay amber.

20.
Curr Biol ; 27(7): 1013-1018, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28343967

RESUMO

Hymenoptera (sawflies, wasps, ants, and bees) are one of four mega-diverse insect orders, comprising more than 153,000 described and possibly up to one million undescribed extant species [1, 2]. As parasitoids, predators, and pollinators, Hymenoptera play a fundamental role in virtually all terrestrial ecosystems and are of substantial economic importance [1, 3]. To understand the diversification and key evolutionary transitions of Hymenoptera, most notably from phytophagy to parasitoidism and predation (and vice versa) and from solitary to eusocial life, we inferred the phylogeny and divergence times of all major lineages of Hymenoptera by analyzing 3,256 protein-coding genes in 173 insect species. Our analyses suggest that extant Hymenoptera started to diversify around 281 million years ago (mya). The primarily ectophytophagous sawflies are found to be monophyletic. The species-rich lineages of parasitoid wasps constitute a monophyletic group as well. The little-known, species-poor Trigonaloidea are identified as the sister group of the stinging wasps (Aculeata). Finally, we located the evolutionary root of bees within the apoid wasp family "Crabronidae." Our results reveal that the extant sawfly diversity is largely the result of a previously unrecognized major radiation of phytophagous Hymenoptera that did not lead to wood-dwelling and parasitoidism. They also confirm that all primarily parasitoid wasps are descendants of a single endophytic parasitoid ancestor that lived around 247 mya. Our findings provide the basis for a natural classification of Hymenoptera and allow for future comparative analyses of Hymenoptera, including their genomes, morphology, venoms, and parasitoid and eusocial life styles.


Assuntos
Evolução Biológica , Himenópteros/classificação , Proteínas de Insetos/genética , Animais , Himenópteros/genética , Himenópteros/fisiologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...