Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(3): e202302547, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37849395

RESUMO

Measuring glycosidase activity is important to monitor any aberrations in carbohydrate hydrolase activity, but also for the screening of potential glycosidase inhibitors. To this end, synthetic substrates are needed which provide an enzyme-dependent read-out upon hydrolysis by the glycosidase. Herein, we present two new routes for the synthesis of caged luminescent carbohydrates, which can be used for determining glycosidase activity with a luminescent reporter molecule. The substrates were validated with glycosidase and revealed a clear linear range and enzyme-dependent signal upon the in situ generation of the luciferin moiety from the corresponding nitrile precursors. Besides, we showed that these compounds could directly be synthesized from unprotected glycosyl-α-fluorides in a two-step procedure with yields up to 75 %. The intermediate methyl imidate appeared a key intermediate which also reacted with d-cysteine to give the corresponding d-luciferin substrate rendering this a highly attractive method for synthesizing glycosyl luciferins in good yields.


Assuntos
Glicosídeo Hidrolases , Luciferinas , Fluoretos/química , Medições Luminescentes
2.
Bioconjug Chem ; 34(12): 2234-2242, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38055970

RESUMO

The synthesis of caged luminescent peptide substrates remains challenging, especially when libraries of the substrates are required. Most currently available synthetic methods rely on a solution-phase approach, which is less suited for parallel synthesis purposes. We herein present a solid-phase peptide synthesis (SPPS) method for the synthesis of caged aminoluciferin peptides via side chain anchoring of the P1 residue. After the synthesis of a preliminary test library consisting of 40 compounds, the synthetic method was validated and optimized for up to >100 g of resin. Subsequently, two separate larger peptide libraries were synthesized either having a P1 = lysine or arginine residue containing in total 719 novel peptide substrates. The use of a more stable caged nitrile precursor instead of caged aminoluciferin rendered our parallel synthetic approach completely suitable for SPPS and serine protease profiling was demonstrated using late-stage aminoluciferin generation.


Assuntos
Peptídeos , Técnicas de Síntese em Fase Sólida , Peptídeos/química , Biblioteca de Peptídeos , Lisina/química , Arginina
3.
Top Curr Chem (Cham) ; 381(6): 35, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37991570

RESUMO

The desire to create biomolecules modified with functionalities that go beyond nature's toolbox has resulted in the development of biocompatible and selective methodologies and reagents, each with different scope and limitations. In this overview, we highlight recent advances in the field of bioconjugation from 2016 to 2023. First, (metal-mediated) protein functionalization by exploiting the specific reactivity of amino acids will be discussed, followed by novel bioorthogonal reagents for bioconjugation of modified biomolecules.


Assuntos
Aminoácidos , Bioengenharia
4.
ChemMedChem ; 18(23): e202300457, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37872124

RESUMO

(R)-PFI-2 is a histone substrate-competitive inhibitor of the human histone lysine monomethyltransferase SETD7. Aimed at developing potent inhibitors of SETD7 that can also act as small molecule substrates, we replaced the pyrrolidine ring of (R)-PFI-2 with several side chains bearing nucleophilic functional groups. We explored the inhibitory activity of 20 novel (R)-PFI-2 analogues, and found that the most potent analogue has a hydroxyethyl side chain (7). SETD7's ability to catalyse methylation of (R)-PFI-2-based small molecules was evaluated by mass spectrometric assays, and we observed efficient methylation of analogues bearing lysine mimicking nucleophilic amines. The optimal side chain was found to be an aminoethyl group (1), which was surprisingly also dimethylated by SETD7. The work demonstrates that small molecules can act as both substrates and inhibitors of biomedically important SETD7.


Assuntos
Histona-Lisina N-Metiltransferase , Histonas , Humanos , Lisina , Pirrolidinas/farmacologia , Pirrolidinas/química
5.
ACS Med Chem Lett ; 14(5): 583-590, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37197454

RESUMO

The recent success of fragment-based drug discovery (FBDD) is inextricably linked to adequate library design. To guide the design of our fragment libraries, we have constructed an automated workflow in the open-source KNIME software. The workflow considers chemical diversity and novelty of the fragments, and can also take into account the three-dimensional (3D) character. This design tool can be used to create large and diverse libraries but also to select a small number of representative compounds as a focused set of unique screening compounds to enrich existing fragment libraries. To illustrate the procedures, the design and synthesis of a 10-membered focused library is reported based on the cyclopropane scaffold, which is underrepresented in our existing fragment screening library. Analysis of the focused compound set indicates significant shape diversity and a favorable overall physicochemical profile. By virtue of its modular setup, the workflow can be readily adjusted to design libraries that focus on properties other than 3D shape.

6.
J Am Chem Soc ; 145(3): 1518-1523, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36626573

RESUMO

Differentiation of enantiomers represents an important research area for pharmaceutical, chemical, and food industries. However, enantiomer separation is a laborious task that demands complex analytical techniques, specialized equipment, and expert personnel. In this respect, discrimination and quantification of d- and l-α-amino acids is no exception, generally requiring extensive sample manipulation, including isolation, functionalization, and chiral separation. This complex sample treatment results in high time costs and potential biases in the quantitative determination. Here, we present an approach based on the combination of non-hydrogenative parahydrogen-induced hyperpolarization and nuclear magnetic resonance that allows detection, discrimination, and quantification of d- and l-α-amino acids in complex mixtures such as biofluids and food extracts down to submicromolar concentrations. Importantly, this method can be directly applied to the system under investigation without any prior isolation, fractionation, or functionalization step.


Assuntos
Aminoácidos , Imageamento por Ressonância Magnética , Aminoácidos/química , Espectroscopia de Ressonância Magnética/métodos , Estereoisomerismo
7.
Chemistry ; 29(18): e202203473, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36484562

RESUMO

The blood coagulation cascade is a complex physiological process involving the action of multiple coupled enzymes, cofactors, and substrates, ultimately leading to clot formation. Serine proteases have a crucial role, and aberrations in their activity can lead to life-threatening bleeding disorders and thrombosis. This review summarizes the essential proteases involved in blood coagulation and fibrinolysis, the endogenous peptide sequences they recognize and hydrolyze, and synthetic peptide probes based on these sequences to measure their activity. The information in this review can contribute to developing novel anticoagulant therapies and specific substrates for point-of-care diagnosis of coagulation pathologies.


Assuntos
Coagulação Sanguínea , Trombose , Humanos , Fibrinólise/fisiologia , Serina Proteases , Serina Endopeptidases
8.
Chemistry ; 29(6): e202203375, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36478614

RESUMO

The click reaction between a functionalized trans-cyclooctene (TCO) and a tetrazine (Tz) is a compelling method for bioorthogonal conjugation in combination with payload releasing capabilities. However, the synthesis of difunctionalized TCOs remains challenging. As a result, these compounds are poorly accessible, which impedes the development of novel applications. In this work, the scalable and accessible synthesis of a new bioorthogonal difunctionalized TCO is reported in only four single selective high yielding steps starting from commercially available compounds. The TCO-Tz click reaction was assessed and revealed excellent kinetic rates and subsequently payload release was shown with various functionalized derivatives. Tetrazine triggered release of carbonate and carbamate payloads was demonstrated up to 100 % release efficiency and local drug release was shown in a cellular toxicity study which revealed a >20-fold increase in cytotoxicity.

9.
Nat Synth ; 1(11): 873-882, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36353682

RESUMO

The development of enantiodivergent catalysts capable of preparing both enantiomeric products from one substrate in a controlled fashion is challenging. Introducing a switching function into the catalyst can address this challenge, allowing the chiral reaction environment to reversibly change during catalysis. Here we report a photoswitchable phosphate ligand, derived from 2,2'-biphenol, which axially coordinates as the counter ion to an achiral manganese(III) salen catalyst, providing the latter with the ability to switch stereoselectivity in the epoxidation of alkenes. The enantiomers of the chiral ligand exist as a pair of pseudo-enantiomers, which can be interconverted by irradiation with light of different wavelengths. The opposite axial chirality of these pseudo-enantiomers is efficiently transferred to the manganese(III) salen catalyst. With this switchable supramolecular catalyst, the enantioselectivity of the epoxidation of a variety of alkenes can be controlled, resulting in opposite enantiomeric excesses of the epoxide products. This transfer of chirality from a photoswitchable anionic ligand to a metal complex broadens the scope of supramolecular catalysts.

10.
Appl Environ Microbiol ; 88(19): e0071922, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36154165

RESUMO

Nitropropionic acid (NPA) is a widely distributed naturally occurring nitroaliphatic toxin produced by leguminous plants and fungi. The Southern green shield bug feeds on leguminous plants and shows no symptoms of intoxication. Likewise, its gut-associated microorganisms are subjected to high levels of this toxic compound. In this study, we isolated a bacterium from this insect's gut system, classified as Pseudomonas sp. strain Nvir, that was highly resistant to NPA and was fully degrading it to inorganic nitrogen compounds and carbon dioxide. In order to understand the metabolic fate of NPA, we traced the fate of all atoms of the NPA molecule using isotope tracing experiments with [15N]NPA and [1-13C]NPA, in addition to experiments with uniformly 13C-labeled biomass that was used to follow the incorporation of 12C atoms from [U-12C]NPA into tricarboxylic acid cycle intermediates. With the help of genomics and transcriptomics, we uncovered the isolate's NPA degradation pathway, which involves a putative propionate-3-nitronate monooxygenase responsible for the first step of NPA degradation. The discovered protein shares only 32% sequence identity with previously described propionate-3-nitronate monooxygenases. Finally, we advocate that NPA-degrading bacteria might find application in biotechnology, and their unique enzymes might be used in biosynthesis, bioremediation, and in dealing with postharvest NPA contamination in economically important products. IMPORTANCE Plants have evolved sophisticated chemical defense mechanisms, such as the production of plant toxins in order to deter herbivores. One example of such a plant toxin is nitropropionic acid (NPA), which is produced by leguminous plants and also by certain fungi. In this project, we have isolated a bacterium from the intestinal tract of a pest insect, the Southern green shield bug, that is able to degrade NPA. Through a multiomics approach, we identified the respective metabolic pathway and determined the metabolic fate of all atoms of the NPA molecule. In addition, we provide a new genetic marker that can be used for genome mining toward NPA degradation. The discovery of degradation pathways of plant toxins by environmental bacteria opens new possibilities for pretreatment of contaminated food and feed sources and characterization of understudied enzymes allows their broad application in biotechnology.


Assuntos
Propionatos , Pseudomonas , Animais , Bactérias , Dióxido de Carbono/metabolismo , Marcadores Genéticos , Insetos , Oxigenases de Função Mista/metabolismo , Nitrocompostos , Compostos de Nitrogênio/metabolismo , Plantas Tóxicas , Propionatos/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo
11.
Commun Biol ; 5(1): 997, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36131087

RESUMO

Hyperprolinemia type II (HPII) is an inborn error of metabolism due to genetic variants in ALDH4A1, leading to a deficiency in Δ-1-pyrroline-5-carboxylate (P5C) dehydrogenase. This leads to an accumulation of toxic levels of P5C, an intermediate in proline catabolism. The accumulating P5C spontaneously reacts with, and inactivates, pyridoxal 5'-phosphate, a crucial cofactor for many enzymatic processes, which is thought to be the pathophysiological mechanism for HPII. Here, we describe the use of a combination of LC-QTOF untargeted metabolomics, NMR spectroscopy and infrared ion spectroscopy (IRIS) to identify and characterize biomarkers for HPII that result of the spontaneous reaction of P5C with malonic acid and acetoacetic acid. We show that these biomarkers can differentiate between HPI, caused by a deficiency of proline oxidase activity, and HPII. The elucidation of their molecular structures yields insights into the disease pathophysiology of HPII.


Assuntos
Prolina Oxidase , Prolina , 1-Pirrolina-5-Carboxilato Desidrogenase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos , Biomarcadores , Fosfatos , Prolina/metabolismo , Prolina Oxidase/genética , Prolina Oxidase/metabolismo , Piridoxal , Pirróis
12.
Chembiochem ; 23(15): e202200190, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35649961

RESUMO

Since the outbreak of SARS-CoV-2 in December 2019 millions of infections have been reported globally. The viral chymotrypsin-like main protease (MPro ) exhibits a crucial role in viral replication and represents a relevant target for antiviral drug development. In order to screen potential MPro inhibitors we developed a luminescent assay using a peptide based probe containing a cleavage site specific for MPro . This assay was validated showing IC50 values similar to those reported in the literature for known MPro inhibitors and can be used to screen new inhibitors.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Proteases 3C de Coronavírus , Cisteína Endopeptidases , Humanos , Medições Luminescentes , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais
13.
Acc Chem Res ; 55(13): 1832-1844, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35709417

RESUMO

Nuclear magnetic resonance (NMR) is a powerful technique for chemical analysis. The use of NMR to investigate dilute analytes in complex systems is, however, hampered by its relatively low sensitivity. An additional obstacle is represented by the NMR signal overlap. Because solutes in a complex mixture are usually not isotopically labeled, NMR studies are often limited to 1H measurements, which, because of the modest dispersion of the 1H resonances (typically ∼10 ppm), can result in challenging signal crowding. The low NMR sensitivity issue can be alleviated by nuclear spin hyperpolarization (i.e., transiently increasing the differences in nuclear spin populations), which determines large NMR signal enhancements. This has been demonstrated for hyperpolarization methods such as dynamic nuclear polarization, spin-exchange optical pumping and para-hydrogen-induced polarization (PHIP). In particular, PHIP has grown into a fast, efficient, and versatile technique since the recent discovery of non-hydrogenative routes to achieve nuclear spin hyperpolarization.For instance, signal amplification by reversible exchange (SABRE) can generate proton as well as heteronuclear spin hyperpolarization in a few seconds in compounds that are able to transiently bind to an iridium catalyst in the presence of para-hydrogen in solution. The hyperpolarization transfer catalyst acts as a chemosensor in the sense that it is selective for analytes that can coordinate to the metal center, such as nitrogen-containing aromatic heterocycles, sulfur heteroaromatic compounds, nitriles, Schiff bases, diaziridines, carboxylic acids, and amines. We have demonstrated that the signal enhancement achieved by SABRE allows rapid NMR detection and quantification of a mixture of substrates down to low-micromolar concentration. Furthermore, in the transient complex, the spin configuration of p-H2 can be easily converted to spin hyperpolarization to produce up to 1000-fold enhanced NMR hydride signals. Because the hydrides' chemical shifts are highly sensitive to the structure of the analyte associating with the iridium complex, they can be employed as hyperpolarized "probes" to signal the presence of specific compounds in the mixture. This indirect detection of the analytes in solution provides important benefits in the case of complex systems, as hydrides resonate in a region of the 1H spectrum (at ca. -20 ppm) that is generally signal-free. The enhanced sensitivity provided by non-hydrogenative PHIP (nhPHIP), together with the absence of interference from the complex matrix (usually resonating between 0 and 10 ppm), set the detection limit for this NMR chemosensor down to sub-µM concentrations, approximately 3 orders of magnitude lower than for conventional NMR. This nhPHIP approach represents, therefore, a powerful tool for NMR analysis of dilute substrates in complex mixtures as it addresses at once the issues of signal crowding and NMR sensitivity. Importantly, being performed at high field inside the NMR spectrometer, the method allows for rapid acquisition of multiple scans, multidimensional hyperpolarized NMR spectra, in a fashion comparable to that of standard NMR measurements.In this Account, we focus on our chemosensing NMR technology, detailing its principles, advantages, and limitations and presenting a number of applications to real systems such as biofluids, beverages, and natural extracts.


Assuntos
Hidrogênio , Irídio , Misturas Complexas , Hidrogênio/química , Irídio/química , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Prótons
14.
J Org Chem ; 87(14): 9139-9147, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35748115

RESUMO

The stereoselective introduction of glycosidic bonds is of paramount importance to oligosaccharide synthesis. Among the various chemical strategies to steer stereoselectivity, participation by either neighboring or distal acyl groups is used particularly often. Recently, the use of the 2,2-dimethyl-2-(ortho-nitrophenyl)acetyl (DMNPA) protection group was shown to offer enhanced stereoselective steering compared to other acyl groups. Here, we investigate the origin of the stereoselectivity induced by the DMNPA group through systematic glycosylation reactions and infrared ion spectroscopy (IRIS) combined with techniques such as isotopic labeling of the anomeric center and isomer population analysis. Our study indicates that the origin of the DMNPA stereoselectivity does not lie in the direct participation of the nitro moiety but in the formation of a dioxolenium ion that is strongly stabilized by the nitro group.


Assuntos
Glicosídeos , Glicosídeos/química , Glicosilação , Íons , Espectrofotometria Infravermelho , Estereoisomerismo
15.
ChemMedChem ; 17(9): e202200020, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35263505

RESUMO

Cyclobutanes are increasingly used in medicinal chemistry in the search for relevant biological properties. Important characteristics of the cyclobutane ring include its unique puckered structure, longer C-C bond lengths, increased C-C π-character and relative chemical inertness for a highly strained carbocycle. This review will focus on contributions of cyclobutane rings in drug candidates to arrive at favorable properties. Cyclobutanes have been employed for improving multiple factors such as preventing cis/trans-isomerization by replacing alkenes, replacing larger cyclic systems, increasing metabolic stability, directing key pharmacophore groups, inducing conformational restriction, reducing planarity, as aryl isostere and filling hydrophobic pockets.


Assuntos
Ciclobutanos , Ciclobutanos/química , Ciclobutanos/farmacologia , Conformação Molecular , Estrutura Molecular
16.
Cryst Growth Des ; 22(3): 1874-1881, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35264911

RESUMO

While much data are available for the Viedma ripening and temperature cycling deracemization processes, not much is known about the advantages (or disadvantages) of a combination of the two. We here try to elucidate what happens when Viedma ripening is used in combination with temperature cycling by comparing not only the deracemization times but also the change in the sizes of the crystals. We found that, in the case of NMPA (rac-(2-methylbenzylidene)-phenylglycine amide) as a model compound, combined experiments significantly increase the deracemization time. By tuning the process parameters, it is possible to approach experimental conditions where both Viedma ripening and temperature cycling control the deracemization. Under those conditions, however, the deracemization time is not significantly improved. Following our results, it seems unlikely that a combination of Viedma ripening and temperature cycling would shorten the deracemization time. Nevertheless, these experiments might provide clues for unraveling the mechanism of temperature cycling.

17.
Chemistry ; 28(9): e202103910, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35045197

RESUMO

This work investigates the addition of monosaccharides to marketed drugs to improve their pharmacokinetic properties for oral absorption. To this end, a set of chloromethyl glycoside synthons were developed to prepare a variety of glycosyloxymethyl-prodrugs derived from 5-fluorouracil, thioguanine, propofol and losartan. Drug release was studied in vitro using ß-glucosidase confirming rapid conversion of the monosaccharide prodrugs to release the parent drug, formaldehyde and the monosaccharide. To showcase this prodrug approach, a glucosyloxymethyl conjugate of the tetrazole-containing drug losartan was used for in vivo experiments and showed complete release of the drug in a dog-model.


Assuntos
Pró-Fármacos , Animais , Cães , Glicosídeos
18.
Chemistry ; 28(9): e202104078, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-34911145

RESUMO

N-Acyliminium ions are highly reactive intermediates that are important for creating CC-bonds adjacent to nitrogen atoms. Here we report the characterization of cyclic N-acyliminium ions in the gas phase, generated by collision induced dissociation tandem mass spectrometry followed by infrared ion spectroscopy using the FELIX infrared free electron laser. Comparison of DFT calculated spectra with the experimentally observed IR spectra provided valuable insights in the conformations of the N-acyliminium ions.


Assuntos
Nitrogênio , Espectrometria de Massas em Tandem , Íons/química , Conformação Molecular , Espectrofotometria Infravermelho/métodos
20.
Anal Chem ; 93(46): 15340-15348, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34756024

RESUMO

Untargeted liquid chromatography-mass spectrometry (LC-MS)-based metabolomics strategies are being increasingly applied in metabolite screening for a wide variety of medical conditions. The long-standing "grand challenge" in the utilization of this approach is metabolite identification─confidently determining the chemical structures of m/z-detected unknowns. Here, we use a novel workflow based on the detection of molecular features of interest by high-throughput untargeted LC-MS analysis of patient body fluids combined with targeted molecular identification of those features using infrared ion spectroscopy (IRIS), effectively providing diagnostic IR fingerprints for mass-isolated targets. A significant advantage of this approach is that in silico-predicted IR spectra of candidate chemical structures can be used to suggest the molecular structure of unknown features, thus mitigating the need for the synthesis of a broad range of physical reference standards. Pyridoxine-dependent epilepsy (PDE-ALDH7A1) is an inborn error of lysine metabolism, resulting from a mutation in the ALDH7A1 gene that leads to an accumulation of toxic levels of α-aminoadipic semialdehyde (α-AASA), piperideine-6-carboxylate (P6C), and pipecolic acid in body fluids. While α-AASA and P6C are known biomarkers for PDE in urine, their instability makes them poor candidates for diagnostic analysis from blood, which would be required for application in newborn screening protocols. Here, we use combined untargeted metabolomics-IRIS to identify several new biomarkers for PDE-ALDH7A1 that can be used for diagnostic analysis in urine, plasma, and cerebrospinal fluids and that are compatible with analysis in dried blood spots for newborn screening. The identification of these novel metabolites has directly provided novel insights into the pathophysiology of PDE-ALDH7A1.


Assuntos
Epilepsia , Aldeído Desidrogenase , Biomarcadores , Cromatografia Líquida , Epilepsia/diagnóstico , Humanos , Recém-Nascido , Metabolômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...