Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35407952

RESUMO

Hadfield steel, under unit pressure conditions, strengthens itself by forming a high density dislocation structure, which results in increased resistance to dynamic impact wear. However, under abrasion conditions, the homogeneous microstructure of the cast steel is insufficient to achieve the expected service life. The aim of the research is to conduct a comparative analysis of the material in its as-delivered state and after two-stage heat treatment (isothermal annealing followed by re-austenitisation). It was found that after isothermal annealing of X120Mn12 grade steel at a temperature of 510 °C, a microstructure with a complex morphology consisting of colonies of fine-grained pearlite, (Fe,Mn)3C carbides distributed along the grain boundaries of the former austenite and needle-like (Fe,Mn)3C carbides was obtained in the austenite matrix. The subsequent thermal treatment of the steel with the use of supersaturating annealing at 900 °C resulted in a heterogeneous microstructure consisting of evenly distributed globular carbide precipitations in a matrix of considerably finer austenite grains in comparison with the as-delivered original state. As a result of the final microstructural changes achieved, a 16.4% increase in abrasion resistance was obtained compared to the delivered condition.

2.
Materials (Basel) ; 14(17)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34501009

RESUMO

Thanks to the continuous development of light-curing resin composites it is now possible to print permanent single-tooth restorations. The purpose of this study was to compare resin composites for milling -Gandio Blocks (GR), Brilliant Crios (CR) and Enamic (EN) with resin composite for 3D printing-Varseo Smile Crown plus (VSC). Three-point bending was used to measure flexural strength (σf) and flexural modulus (Ef). The microhardness was measured using a Vickers method, while fractographic, microstructural, texture and fractal dimension (FD) analyses were performed using SEM, optical microscope and picture analysis methods. The values of σf ranged from 118.96 (±2.81) MPa for EN to 186.02 (±10.49) MPa for GR, and the values of Ef ranged from 4.37 (±0.8) GPa for VSC to 28.55 (±0.34) GPa for EN. HV01 ranged from 25.8 (±0.7) for VSC to 273.42 (±27.11) for EN. The filler content ranged from 19-24 vol. % for VSC to 70-80 vol. % for GR and EN. The observed fractures are typical for brittle materials. The correlation between FD of materials microstructure and Ef was observed. σf of the printed resin depends on layers orientation and is significantly lower than σf of GR and CR. Ef of the printed material is significantly lower than Ef of blocks for milling.

3.
Materials (Basel) ; 14(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375735

RESUMO

Electrically-Assisted Forming (EAF) techniques are interesting and promising for the automotive industry. Electrically-assisted tensile tests were carried out on specimens of AA7075 aluminum alloy in different states of hardening, namely T6 (the as-received state) and the supersaturated solid solution state. All the tests were carried out in quasi-static conditions under the application of direct electric current (DC) in the range of 90 to 540 A. The experimental results showed that with a DC density of 10 A/mm2 the uniform strain and strain at fracture increased when the AA7075 was in the supersaturated solid solution state. A correlation between the mechanical results and microstructural features analysed through transmission electron microscopy was assessed. An explanation of the investigated phenomena based on the electron wind theory, heterogeneous microscale Joule heating and the Portevin-Le Chatelier (PLC) effect was finally proposed.

4.
Biomed Res Int ; 2016: 5268629, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28097137

RESUMO

Introduction and Aim. Exceptional properties of the NiTi archwires may be jeopardized by the oral cavity; thus its long-term effect on the mechanical and physiochemical properties of NiTi archwires was the aim of work. Material and Methods. Study group comprised sixty 0.016 × 0.022 NiTi archwires from the same manufacturer evaluated (group A) after the first 12 weeks of orthodontic treatment. 30 mm long pieces cut off from each wire prior to insertion formed the control group B. Obeying the strict rules of randomization, all samples were subjected to microscopic evaluation and nanoindentation test. Results. Both groups displayed substantial presence of nonmetallic inclusions. Heterogeneity of the structure and its alteration after usage were found in groups B and A, respectively. Conclusions. Long-term, reliable prediction of biomechanics of NiTi wires in vivo is impossible, especially new archwires from the same vendor display different physiochemical properties. Moreover, manufacturers have to decrease contamination in the production process in order to minimize risk of mutual negative influence of nickel-titanium archwires and oral environment.


Assuntos
Níquel/uso terapêutico , Fios Ortodônticos , Estresse Mecânico , Titânio/uso terapêutico , Corrosão , Humanos , Teste de Materiais , Boca/química , Boca/efeitos dos fármacos , Níquel/química , Propriedades de Superfície , Titânio/química
5.
Polim Med ; 43(2): 81-91, 2013.
Artigo em Polonês | MEDLINE | ID: mdl-24044288

RESUMO

AIM OF THE STUDY: Evaluation of the influence of the introduced structure modification in porous ceramic grafts on TiO2 base on overgrowing with bone tissue, in examinations with use of scanning microscopy and X-rays was the subject of the examinations. MATERIAL AND METHOD: New ceramic materials based on TiO2 with high values of mechanical resistance, large sintering degree and biocompatibility in in vitro conditions were prepared. Those properties cause that they are worth interest as potential osteosubstitutive materials. Two kinds of grafts were created from ceramics based on TiO2: with compact and porous structure. The introduced structure modification - macroporosity - had the purpose to give osteoconductive properties to the grafts, to evoke processes favorable for bone tissue forming. In examinations of the local reaction of bone tissue after implantation of the formed porous grafts, degree of their osteointegration, the essential issue is the evaluation of the settling of the inner spaces with supporting tissues. Samples of the tested compact and porous materials in the form of cylinders were implanted in femoral bones of rabbits for a period till 6 months. The surfaces of grafts and the degree of their settling with supporting tissues were evaluated in cross-sections of the implants with light and scanning microscopic methods and they were confirmed in X-ray tests. RESULTS: Analysis of the obtained data showed that, the surface of solid ceramic on TiO2 base was covered mainly with increasing with a time of observation quantities of extracellular substance and lamellas of bone. The macrporous structure of porous ceramic on TiO2 base enabled settling of the inner spaces of graft with supporting tissue cells, partly in the 1st month, more intensively in the 3rd and it was not completed in the 6th month after implantation. CONCLUSIONS: Porous grafts in the form of ceramic foam on TiO2 base showed osteoconductive properties, though process of colonization after 6th month observation was not completed and the condition of the cells inside of the implant was reduced.


Assuntos
Materiais Biocompatíveis , Transplante Ósseo/métodos , Transplante Ósseo/patologia , Ossificação Heterotópica/terapia , Próteses e Implantes , Titânio/química , Titânio/uso terapêutico , Animais , Cerâmica/química , Cerâmica/uso terapêutico , Osteogênese/fisiologia , Coelhos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...