Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 37(4): 61, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33719024

RESUMO

In lactobacilli, CcpA is known to modulate the expression of genes involved in sugar metabolism, stress response and aerobic adaptation. This study aimed to evaluate a ccpA mutant of Lacticaseibacillus casei BL23 to increase lactic acid production using cheese whey. The ccpA derivative (BL71) showed better growth than the L. casei wild-type in the whey medium. In a stirred tank reactor, at 48 h, lactate production by BL71 was eightfold higher than that by BL23. In batch fermentations, the final values reached were 44.23 g L-1 for BL71 and 27.58 g L-1 for BL23. Due to a decrease in the delay of lactate production in the mutant, lactate productivity increased from 0.17 g (L.h)-1 with BL23 to 0.80 g (L.h)-1 with BL71. We found that CcpA would play additional roles in nitrogen metabolism by the regulation of the proteolytic system. BL71 displayed higher activity of the PepX, PepQ and PrtP enzymes than BL23. Analysis of prtP expression confirmed this deregulation in BL71. Promoter analysis of the prtP gene revealed CcpA binding sites with high identity to the cre consensus sequence and the interaction of CcpA with this promoter was confirmed in vitro. We postulate that deregulation of the proteolytic system in BL71 allows a better exploitation of nitrogen resources in cheese whey, resulting in enhanced fermentation capacity. Therefore, the ccpA gene could be a good target for future technological developments aimed at effective and inexpensive lactate production from dairy industrial wastes.


Assuntos
Queijo , Meios de Cultura/química , Ácido Láctico/metabolismo , Lactobacillaceae/genética , Lactobacillaceae/metabolismo , Soro do Leite/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Metabolismo dos Carboidratos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Indústria de Laticínios , Fermentação , Concentração de Íons de Hidrogênio , Resíduos Industriais
2.
PLoS One ; 9(10): e111114, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25354162

RESUMO

Lysinibacillus sphaericus strains belonging the antigenic group H5a5b produce spores with larvicidal activity against larvae of Culex mosquitoes. C7, a new isolated strain, which presents similar biochemical characteristics and Bin toxins in their spores as the reference strain 2362, was, however, more active against larvae of Culex mosquitoes. The contribution of the surface layer protein (S-layer) to this behaviour was envisaged since this envelope protein has been implicated in the pathogenicity of several bacilli, and we had previously reported its association to spores. Microscopic observation by immunofluorescence detection with anti S-layer antibody in the spores confirms their attachment. S-layers and BinA and BinB toxins formed high molecular weight multimers in spores as shown by SDS-PAGE and western blot detection. Purified S-layer from both L. sphaericus C7 and 2362 strain cultures was by itself toxic against Culex sp larvae, however, that from C7 strain was also toxic against Aedes aegypti. Synergistic effect between purified S-layer and spore-crystal preparations was observed against Culex sp. and Aedes aegypti larvae. This effect was more evident with the C7 strain. In silico analyses of the S-layer sequence suggest the presence of chitin-binding and hemolytic domains. Both biochemical characteristics were detected for both S-layers strains that must justify their contribution to pathogenicity.


Assuntos
Aedes/efeitos dos fármacos , Bacillaceae/química , Culex/efeitos dos fármacos , Glicoproteínas de Membrana/toxicidade , Sequência de Aminoácidos , Animais , Quitina/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/farmacologia , Dados de Sequência Molecular , Ligação Proteica , Multimerização Proteica , Esporos Bacterianos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...