Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 80(11): 341, 2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37898977

RESUMO

Following myocardial ischemic injury, the most effective clinical intervention is timely restoration of blood perfusion to ischemic but viable myocardium to reduce irreversible myocardial necrosis, limit infarct size, and prevent cardiac insufficiency. However, reperfusion itself may exacerbate cell death and myocardial injury, a process commonly referred to as ischemia/reperfusion (I/R) injury, which primarily involves cardiomyocytes and cardiac microvascular endothelial cells (CMECs) and is characterized by myocardial stunning, microvascular damage (MVD), reperfusion arrhythmia, and lethal reperfusion injury. MVD caused by I/R has been a neglected problem compared to myocardial injury. Clinically, the incidence of microvascular angina and/or no-reflow due to ineffective coronary perfusion accounts for 5-50% in patients after acute revascularization. MVD limiting drug diffusion into injured myocardium, is strongly associated with the development of heart failure. CMECs account for > 60% of the cardiac cellular components, and their role in myocardial I/R injury cannot be ignored. There are many studies on microvascular obstruction, but few studies on microvascular leakage, which may be mainly due to the lack of corresponding detection methods. In this review, we summarize the clinical manifestations, related mechanisms of MVD during myocardial I/R, laboratory and clinical examination means, as well as the research progress on potential therapies for MVD in recent years. Better understanding the characteristics and risk factors of MVD in patients after hemodynamic reconstruction is of great significance for managing MVD, preventing heart failure and improving patient prognosis.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Humanos , Células Endoteliais/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Insuficiência Cardíaca/metabolismo
2.
Front Cardiovasc Med ; 9: 1049143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712241

RESUMO

Leukocyte differentiation antigen 74 (CD74), also known as invariant chain, is a molecular chaperone of major histocompatibility complex class II (MHC II) molecules involved in antigen presentation. CD74 has recently been shown to be a receptor for the macrophage migration inhibitory factor family proteins (MIF/MIF2). Many studies have revealed that CD74 plays an important role in cardiovascular disease. In this review, we summarize the structure and main functions of CD74 and then focus on the recent research progress on the role of CD74 in cardiovascular diseases. In addition, we also discuss potential treatment strategies that target CD74. Our systematic review of the role of CD74 in cardiovascular disease will fill some knowledge gaps in the field.

3.
Basic Res Cardiol ; 114(4): 30, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31218471

RESUMO

Microvascular obstruction (MVO) and leakage (MVL) forms a pivotal part of microvascular damage following cardiac ischemia-reperfusion (IR). We tested the effect of relaxin therapy on MVO and MVL in mice following cardiac IR injury including severity of MVO and MVL, opening capillaries, infarct size, regional inflammation, cardiac function and remodelling, and permeability of cultured endothelial monolayer. Compared to vehicle group, relaxin treatment (50 µg/kg) reduced no-reflow area by 38% and the content of Evans blue as a permeability tracer by 56% in jeopardized myocardium (both P < 0.05), effects associated with increased opening capillaries. Relaxin also decreased leukocyte density, gene expression of cytokines, and mitigated IR-induced decrease in protein content of VE-cadherin and relaxin receptor. Infarct size was comparable between the two groups. At 2 weeks post-IR, relaxin treatment partially preserved cardiac contractile function and limited chamber dilatation versus untreated controls by echocardiography. Endothelial cell permeability assay demonstrated that relaxin attenuated leakage induced by hypoxia-reoxygenation, H2O2, or cytokines, action that was independent of nitric oxide but associated with the preservation of VE-cadherin. In conclusion, relaxin therapy attenuates IR-induced MVO and MVL and endothelial leakage. This protection was associated with reduced regional inflammatory responses and consequently led to alleviated adverse cardiac remodeling.


Assuntos
Anti-Inflamatórios/farmacologia , Vasos Coronários/efeitos dos fármacos , Microvasos/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Fragmentos de Peptídeos/farmacologia , Relaxina/farmacologia , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Linhagem Celular , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Modelos Animais de Doenças , Fibrose , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microvasos/metabolismo , Microvasos/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Receptores Acoplados a Proteínas G/metabolismo , Remodelação Ventricular/efeitos dos fármacos
4.
Clin Sci (Lond) ; 133(5): 665-680, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30804219

RESUMO

Ischemic preconditioning (IPC) is an endogenous protection strategy against myocardial ischemia-reperfusion (I/R) injury. Macrophage migration inhibitory factor (MIF) released from the myocardium subjected to brief periods of ischemia confers cardioprotection. We hypothesized that MIF plays an essential role in IPC-induced cardioprotection. I/R was induced either ex vivo or in vivo in male wild-type (WT) and MIF knockout (MIFKO) mice with or without proceeding IPC (three cycles of 5-min ischemia and 5-min reperfusion). Indices of myocardial injury, regional inflammation and cardiac function were determined to evaluate the extent of I/R injury. Activations of the reperfusion injury salvage kinase (RISK) pathway, AMP-activated protein kinase (AMPK) and their downstream components were investigated to explore the underlying mechanisms. IPC conferred prominent protection in WT hearts evidenced by reduced infarct size (by 33-35%), myocyte apoptosis and enzymatic markers of tissue injury, ROS production, inflammatory cell infiltration and MCP1/CCR2 expression (all P<0.05). IPC also ameliorated cardiac dysfunction both ex vivo and in vivo These protective effects were abolished in MIFKO hearts. Notably, IPC mediated further activations of RISK pathway, AMPK and the membrane translocation of GLUT4 in WT hearts. Deletion of MIF blunted these changes in response to IPC, which is the likely basis for the absence of protective effects of IPC against I/R injury. In conclusion, MIF plays a critical role in IPC-mediated cardioprotection under ischemic stress by activating RISK signaling pathway and AMPK. These results provide an insight for developing a novel therapeutic strategy that target MIF to protect ischemic hearts.


Assuntos
Oxirredutases Intramoleculares/metabolismo , Precondicionamento Isquêmico Miocárdico/métodos , Fatores Inibidores da Migração de Macrófagos/metabolismo , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Oxirredutases Intramoleculares/deficiência , Oxirredutases Intramoleculares/genética , Fatores Inibidores da Migração de Macrófagos/deficiência , Fatores Inibidores da Migração de Macrófagos/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Receptores CCR2/metabolismo , Transdução de Sinais , Remodelação Ventricular
5.
Blood Coagul Fibrinolysis ; 29(4): 361-368, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29406386

RESUMO

: Fractalkine (FKN) is a cytokine which plays an important role in atherosclerosis and other inflammatory diseases. Studies have shown that FKN induces integrin-independent leukocyte adhesion to primary endothelial cells under physiological flow conditions. Further, increased expression of FKN has been demonstrated in atherosclerotic lesions induced by low shear stress. However, the signal transduction mechanisms involved in low shear stress-induced FKN upregulation are not well characterized. In this study, EA.hy926 cells were subjected to varying intensity of fluid shear stress for different time durations. Further, mRNA and protein expressions of FKN were assessed by quantitative real-time PCR and Western blotting, respectively. Upregulation of FKN expression, which was induced via activation of mitogen-activated protein kinases signaling pathway under conditions of low shear stress, was studied both in the presence and absence of inhibitors. Low shear stress (∼4.58 dyne/cm) for more than 1 h promoted FKN expression and activated the extracellular signal-regulated kinase (ERK)1/2, p38, and Jun N-terminal kinase (JNK) mitogen-activated protein kinases signaling pathways by their phosphorylation. Inhibitors of ERK1/2, p38, and JNK pathways downregulated the FKN expression. In this study, fluid shear stress affected FKN expression in endothelial cells via activation of ERK1/2, p38, and JNK in a time-dependent manner. Our findings serve to advance the theoretical basis for prevention and treatment of atherosclerosis.


Assuntos
Quimiocina CX3CL1/metabolismo , Células Endoteliais/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estresse Mecânico , Aterosclerose/prevenção & controle , Linhagem Celular , Quimiocina CX3CL1/genética , Células Endoteliais/enzimologia , Humanos , Fosforilação , RNA Mensageiro/metabolismo , Transdução de Sinais , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...