Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 246: 115892, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38056343

RESUMO

Since the progression of biofilm formation is related to the success of infection treatment, detecting microbial biofilms is of great interest. Biofilms of Gram-positive Staphylococcus aureus and Streptococcus gordonii bacteria, Gram-negative Pseudomonas aeruginosa and Escherichia coli bacteria, and Candida albicans yeast were examined using potentiometric, amperometric, and wireless readout modes in this study. As a biofilm formed, the open circuit potential (OCP) of biofilm hosting electrode (bioanode) became increasingly negative. Depending on the microorganism, the OCP ranged from -70 to -250 mV. The co-culture generated the most negative OCP (-300 mV vs Ag/AgCl), while the single-species biofilm formed by E. coli developed the least negative (-70 mV). The OCP of a fungal biofilm formed by C. albicans was -100 mV. The difference in electrode currents generated by biofilms was more pronounced. The current density of the S. aureus biofilm was 0.9‧10-7 A cm-2, while the value of the P. aeruginosa biofilm was 1.3‧10-6 A cm-2. Importantly, a biofilm formed by a co-culture of S. aureus and P. aeruginosa had a slightly higher negative OCP value and current density than the most electrogenic P. aeruginosa single-species biofilm. We present evidence that bacteria can share redox mediators found in multi-species biofilms. This synergy, enabling higher current and OCP values of multi-species biofilm hosting electrodes, could be beneficial for electrochemical detection of infectious biofilms in clinics. We demonstrate that the electrogenic biofilm can provide basis to construct novel wireless, chip-free, and battery-free biofilm detection method.


Assuntos
Técnicas Biossensoriais , Staphylococcus aureus , Escherichia coli , Biofilmes , Candida albicans , Pseudomonas aeruginosa
2.
Angew Chem Int Ed Engl ; 62(40): e202308181, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37490019

RESUMO

Biofilm-associated infections, which are able to resist antibiotics, pose a significant challenge in clinical treatments. Such infections have been linked to various medical conditions, including chronic wounds and implant-associated infections, making them a major public-health concern. Early-detection of biofilm formation offers significant advantages in mitigating adverse effects caused by biofilms. In this work, we aim to explore the feasibility of employing a novel wireless sensor for tracking both early-stage and matured-biofilms formed by the medically relevant bacteria Staphylococcus aureus and Pseudomonas aeruginosa. The sensor utilizes electrochemical reduction of an AgCl layer bridging two silver legs made by inkjet-printing, forming a part of near-field-communication tag antenna. The antenna is interfaced with a carbon cloth designed to promote the growth of microorganisms, thereby serving as an electron source for reduction of the resistive AgCl into a highly-conductive Ag bridge. The AgCl-Ag transformation significantly alters the impedance of the antenna, facilitating wireless identification of an endpoint caused by microbial growth. To the best of our knowledge, this study for the first time presents the evidence showcasing that electrons released through the actions of bacteria can be harnessed to convert AgCl to Ag, thus enabling the wireless, battery-less, and chip-less early-detection of biofilm formation.


Assuntos
Biofilmes , Staphylococcus aureus , Antibacterianos/farmacologia , Bactérias , Pseudomonas aeruginosa
3.
Pharmaceutics ; 15(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37242755

RESUMO

Oral transmucosal administration, where drugs are absorbed directly through the non-keratinized, lining mucosa of the mouth, represents a solution to drug delivery with several advantages. Oral mucosal equivalents (OME) developed as 3D in vitro models are of great interest since they express the correct cell differentiation and tissue architecture, simulating the in vivo conditions better than monolayer cultures or animal tissues. The aim of this work was to develop OME to be used as a membrane for drug permeation studies. We developed both full-thickness (i.e., connective plus epithelial tissue) and split-thickness (i.e., only epithelial tissue) OME using non-tumor-derived human keratinocytes OKF6 TERT-2 obtained from the floor of the mouth. All the OME developed here presented similar transepithelial electrical resistance (TEER) values, comparable to the commercial EpiOral™. Using eletriptan hydrobromide as a model drug, we found that the full-thickness OME had similar drug flux to EpiOral™ (28.8 vs. 29.6 µg/cm2/h), suggesting that the model had the same permeation barrier properties. Furthermore, full-thickness OME showed an increase in ceramide content together with a decrease in phospholipids in comparison to the monolayer culture, indicating that lipid differentiation occurred due to the tissue-engineering protocols. The split-thickness mucosal model resulted in 4-5 cell layers with basal cells still undergoing mitosis. The optimum period at the air-liquid interface for this model was twenty-one days; after longer times, signs of apoptosis appeared. Following the 3R principles, we found that the addition of Ca2+, retinoic acid, linoleic acid, epidermal growth factor and bovine pituitary extract was important but not sufficient to fully replace the fetal bovine serum. Finally, the OME models presented here offer a longer shelf-life than the pre-existing models, which paves the way for the further investigation of broader pharmaceutical applications (i.e., long-term drug exposure, effect on the keratinocytes' differentiation and inflammatory conditions, etc.).

4.
Int J Pharm ; 637: 122891, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36997077

RESUMO

The aim of this study was to investigate the effect of various skin preservation protocols on in vitro drug permeation, epidermal-dermal drug distribution, and electrical impedance properties of skin membranes. Acyclovir (AC) and methyl salicylate (MS) were selected as model drugs due to their different physicochemical properties and skin metabolic profiles. In particular, AC is relatively hydrophilic (logP -1.8) and not expected to be affected by skin metabolism, while MS is relatively lipophilic (logP 2.5) and susceptible to metabolism, being a substrate for esterase residing in skin. Skin from pig ears was used and freshly excised into split-thickness membranes, which were divided and immediately stored at five different storage conditions: a) 4 °C overnight (fresh control), b) 4 °C for 4 days, c) and d) -20 °C for 6 weeks and one year, respectively, and e) -80 °C for 6 weeks. Based on the combined results, general trends are observed showing that fresh skin is associated with lower permeation of both model drugs and higher skin membrane electrical resistance, as compared to the other storage conditions. Interestingly, in the case of fresh skin, significantly lower amounts of MS are detected in the epidermis and dermis compartments, implying higher levels of ester hydrolysis of MS (i.e., higher esterase activity). In line with this, the concentration of salicylic acid (SA) extracted from the dermis is significantly higher for fresh skin, as compared to the other storage conditions. Nevertheless, for all storage conditions, substantial amounts of SA are detected in the receptor medium, as well as in the epidermis and dermis, implying that esterase activity is maintained to some extent in all cases. For AC, which is not expected to be affected by skin metabolism, freeze storage (protocols c-e) is observed to result in higher accumulation of AC in the epidermis, as compared to the case of fresh skin, while the AC concentration in dermis is unaffected. These observations can be rationalized primarily by the observed lower permeability of fresh skin towards this hydrophilic substance. Finally, a strong correlation between AC permeation and electrical skin resistance is shown for individual skin membranes irrespective of storage condition, while the corresponding correlation for MS is inferior. On the other hand, a strong correlation is shown for individual membranes between MS permeation and electrical skin capacitance, while a similar correlation for AC is lower. The observed correlations between drug permeability and electrical impedance open up for standardizing in vitro data for improved analysis and comparisons between permeability results obtained with skin stored at different conditions.


Assuntos
Esterases , Pele , Animais , Suínos , Impedância Elétrica , Pele/metabolismo , Esterases/metabolismo , Permeabilidade , Ácido Salicílico
5.
Diabet Med ; 39(11): e14947, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36054410

RESUMO

AIM: To establish outcomes of a priority setting partnership between participants with diabetes mellitus and clinicians to identify the top 10 research priorities for preventing and treating diabetic foot ulcers (DFUs). METHODS: Due to the COVID-19 pandemic, the James Lind Alliance Priority Setting Partnership process was adapted into a digital format which involved a pilot survey to identify understandable uncertainties with high relevance for participants tested by calculating the content validity index; a main survey answered by 53 participants living with diabetes and 49 clinicians; and a final digital workshop to process and prioritise the final top 10 research priorities. RESULTS: The content validity index was satisfactory for 20 out of 25 uncertainties followed by minor changes and one additional uncertainty. After we processed the 26 uncertainties from the main survey and seven current guidelines, a list of 28 research uncertainties remained for review and discussion in the digital workshop. The final top 10 research priorities included the organisation of diabetes care; screening of diabetes, impaired blood circulation, neuropathy, and skin properties; vascular surgical treatment; importance of self-care; help from significant others; pressure relief; and prevention of infection. CONCLUSION: The top 10 research priorities for preventing and treating DFUs represent consensus areas from persons living with diabetes and clinicians to guide future research. These research priorities can justify and inform strategic allocation of research funding. The digitalisation of James Lind Alliance methodology was feasible.


Assuntos
Pesquisa Biomédica , COVID-19 , Diabetes Mellitus , Pé Diabético , COVID-19/terapia , Pé Diabético/prevenção & controle , Prioridades em Saúde , Humanos , Pandemias , Inquéritos e Questionários
6.
ACS Sens ; 7(4): 1222-1234, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35392657

RESUMO

To maximize the potential of 5G infrastructure in healthcare, simple integration of biosensors with wireless tag antennas would be beneficial. This work introduces novel glucose-to-resistor transduction, which enables simple, wireless biosensor design. The biosensor was realized on a near-field communication tag antenna, where a sensing bioanode generated electrical current and electroreduced a nonconducting antenna material into an excellent conductor. For this, a part of the antenna was replaced by a Ag nanoparticle layer oxidized to high-resistance AgCl. The bioanode was based on Au nanoparticle-wired glucose dehydrogenase (GDH). The exposure of the cathode-bioanode to glucose solution resulted in GDH-catalyzed oxidation of glucose at the bioanode with a concomitant reduction of AgCl to highly conducting Ag on the cathode. The AgCl-to-Ag conversion strongly affected the impedance of the antenna circuit, allowing wireless detection of glucose. Mimicking the final application, the proposed wireless biosensor was ultimately evaluated through the measurement of glucose in whole blood, showing good agreement with the values obtained with a commercially available glucometer. This work, for the first time, demonstrates that making a part of the antenna from the AgCl layer allows achieving simple, chip-less, and battery-less wireless sensing of enzyme-catalyzed reduction reaction.


Assuntos
Fontes de Energia Bioelétrica , Nanopartículas Metálicas , Glucose/química , Ouro , Prata
7.
Anal Chem ; 94(15): 5856-5865, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35394278

RESUMO

Monitoring of low-molecular weight cancer biomarkers, such as tryptophan (Trp) and its derivative kynurenine (Kyn), might be advantageous to non-invasive skin cancer detection. Thus, we assessed several approaches of topical sampling of Trp and Kyn, in relation to phenylalanine (Phe) and tyrosine (Tyr), on the volar forearm of six healthy volunteers. The sampling was performed with three hydrogels (made of agarose or/and chitosan), hydrated starch films, cotton swabs, and tape stripping. The biomarkers were successfully sampled by all approaches, but the amount of collected Kyn was low, 20 ± 10 pmol/cm2. Kyn quantification was below LOQ, and thus, it was detected only in 20% of topical samples. To mitigate variability problems of absolute amounts of sampled amino acids, Tyr/Trp, Phe/Trp, and Phe/Tyr ratios were assessed, proving reduced inter-individual variation from 79 to 45% and intra-individual variation from 42 to 21%. Strong positive correlation was found between Phe and Trp, pointing to the Phe/Trp ratio (being in the 1.0-2.0 range, at 95% confidence) being least dependent on sampling materials, approaches, and sweating. This study leads to conclusion that due to the difficulty in quantifying less abundant Kyn, and thus the Trp/Kyn ratio, the Phe/Trp ratio might be a possible, alternative biomarker for detecting skin cancers.


Assuntos
Biomarcadores Tumorais , Neoplasias Cutâneas , Biomarcadores , Voluntários Saudáveis , Humanos , Cinurenina/metabolismo , Peso Molecular , Fenilalanina , Neoplasias Cutâneas/diagnóstico , Triptofano/metabolismo , Tirosina
8.
Pharmaceutics ; 14(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35214046

RESUMO

The molecular composition of human skin is altered due to diseases, which can be utilized for non-invasive sampling of biomarkers and disease diagnostics. For this to succeed, it is crucial to identify a sampling formulation with high extraction efficiency and reproducibility. Highly hydrated skin is expected to be optimal for increased diffusion of low-molecular-weight biomarkers, enabling efficient extraction as well as enhanced reproducibility as full hydration represents a well-defined endpoint. Here, the aim was to explore water-based formulations with high water activities, ensuring satisfactory skin hydration, for non-invasive sampling of four analytes that may serve as potential biomarkers, namely tryptophan, tyrosine, phenylalanine, and kynurenine. The included formulations consisted of two hydrogels (chitosan and agarose) and two different liquid crystalline cubic phases based on the polar lipid glycerol monooleate, which were all topically applied for 2 h on 35 healthy subjects in vivo. The skin status of all sampling sites was assessed by electrical impedance spectroscopy and transepidermal water loss, enabling explorative correlations between biophysical properties and analyte abundancies. Taken together, all formulations resulted in the successful and reproducible collection of the investigated biomarkers. Still, the cubic phases had an extraction capacity that was approximately two times higher compared to the hydrogels.

9.
Biomedicines ; 9(12)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34944684

RESUMO

The generation of reactive oxygen species presents a destructive challenge for the skin organ and there is a clear need to advance skin care formulations aiming at alleviating oxidative stress. The aim of this work was to characterize the activity of the antioxidative enzyme catalase in keratinocytes and in the skin barrier (i.e., the stratum corneum). Further, the goal was to compare the activity levels with the corresponding catalase activity found in defatted algae biomass, which may serve as a source of antioxidative enzymes, as well as other beneficial algae-derived molecules, to be employed in skin care products. For this, an oxygen electrode-based method was employed to determine the catalase activity and the apparent kinetic parameters for purified catalase, as well as catalase naturally present in HaCaT keratinocytes, excised stratum corneum samples collected from pig ears with various amounts of melanin, and defatted algae biomass from the diatom Phaeodactylum tricornutum. Taken together, this work illustrates the versatility of the oxygen electrode-based method for characterizing catalase function in samples with a high degree of complexity and enables the assessment of sample treatment protocols and comparisons between different biological systems related to the skin organ or algae-derived materials as a potential source of skin care ingredients for combating oxidative stress.

10.
Biosens Bioelectron ; 191: 113420, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34182432

RESUMO

Reducing animal use in biosensor research requires broader use of in vitro methods. In this work, we present a novel application of Franz cells suitable for biosensor development and evaluation in vitro. The work describes how Franz cell can be equipped with electrodes enabling characterization of biosensors in close proximity to skin. As an example of a sensor, hydrogen peroxide biosensor was prepared based on horseradish peroxidase (HRP)/single-walled carbon nanotube (SWCNT)-modified textile. The electrode exhibited lower detection limit of 0.3 µM and sensitivity of 184 µA mM-1 cm-2. The ability of this biosensor to monitor H2O2 penetration through skin and dialysis membranes was evaluated in Franz cell setup in amperometric and wireless modes. The results also show that catalase activity present in skin is a considerable problem for epidermal sensing of H2O2. This work highlights opportunities and obstacles that can be addressed by assessment of biosensors in Franz cell setup before progressing to their testing in animals and humans.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Eletrodos , Enzimas Imobilizadas , Peroxidase do Rábano Silvestre , Humanos , Peróxido de Hidrogênio , Diálise Renal
11.
Biomedicines ; 9(4)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807251

RESUMO

Proper skin barrier function is paramount for our survival, and, suffering injury, there is an acute need to restore the lost barrier and prevent development of a chronic wound. We hypothesize that rapid wound closure is more important than immediate perfection of the barrier, whereas specific treatment may facilitate perfection. The aim of the current project was therefore to evaluate the quality of restored tissue down to the molecular level. We used Göttingen minipigs with a multi-technique approach correlating wound healing progression in vivo over three weeks, monitored by classical methods (e.g., histology, trans-epidermal water loss (TEWL), pH) and subsequent physicochemical characterization of barrier recovery (i.e., small and wide-angle X-ray diffraction (SWAXD), polarization transfer solid-state NMR (PTssNMR), dynamic vapor sorption (DVS), Fourier transform infrared (FTIR)), providing a unique insight into molecular aspects of healing. We conclude that although acute wounds sealed within two weeks as expected, molecular investigation of stratum corneum (SC) revealed a poorly developed keratin organization and deviations in lipid lamellae formation. A higher lipid fluidity was also observed in regenerated tissue. This may have been due to incomplete lipid conversion during barrier recovery as glycosphingolipids, normally not present in SC, were indicated by infrared FTIR spectroscopy. Evidently, a molecular approach to skin barrier recovery could be a valuable tool in future development of products targeting wound healing.

12.
Sensors (Basel) ; 21(5)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33670868

RESUMO

This paper proposes a combined strategy of using paper-based competitive immunochromatography and a near field communication (NFC) tag for wireless cotinine determination. The glucose oxidase labeled cotinine antibody specifically binds free cotinine in a sample, whereas the unoccupied antibody attached to BSA-cotinine at the test line on a lateral flow strip. The glucose oxidase on the strip and an assistant pad in the presence of glucose generated H2O2 and imposed the Ag oxidation on the modified electrode. This enabled monitoring of immunoreaction by either electrochemical measurement or wireless detection. Wireless sensing was realized for cotinine in the range of 100-1000 ng/mL (R2 = 0.96) in PBS medium. Undiluted urine samples from non-smokers exhibited an Ag-oxidation rate three times higher than the smoker's urine samples. For 1:8 diluted urine samples (smokers), the proposed paper-based competitive immunochromatography coupled with an enzyme-modified electrode differentiated positive and negative samples and exhibited cotinine discrimination at levels higher than 12 ng/mL. This novel sensing platform can potentially be combined with a smartphone as a reader unit.


Assuntos
Técnicas Biossensoriais , Cromatografia de Afinidade , Cotinina , Cotinina/urina , Eletrodos , Peróxido de Hidrogênio
13.
Nanomaterials (Basel) ; 11(1)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445433

RESUMO

The object of this study is a comparison between solid lipid nanoparticles and ethosomes for caffeic acid delivery through the skin. Caffeic acid is a potent antioxidant molecule whose cutaneous administration is hampered by its low solubility and scarce stability. In order to improve its therapeutic potential, caffeic acid has been encapsulated within solid lipid nanoparticles and ethosomes. The effect of lipid matrix has been evaluated on the morphology and size distribution of solid lipid nanoparticles and ethosomes loaded with caffeic acid. Particularly, morphology has been investigated by cryogenic transmission electron microscopy and small angle X-ray scattering, while mean diameters have been evaluated by photon correlation spectroscopy. The antioxidant power has been evaluated by the 2,2-diphenyl-1-picrylhydrazyl methodology. The influence of the type of nanoparticulate system on caffeic acid diffusion has been evaluated by Franz cells associated to the nylon membrane, while to evaluate caffeic acid permeation through the skin, an amperometric study has been conducted, which was based on a porcine skin-covered oxygen electrode. This apparatus allows measuring the O2 concentration changes in the membrane induced by polyphenols and H2O2 reaction in the skin. The antioxidative reactions in the skin induced by caffeic acid administered by solid lipid nanoparticles or ethosomes have been evaluated. Franz cell results indicated that caffeic acid diffusion from ethosomes was 18-fold slower with respect to solid lipid nanoparticles. The amperometric method evidenced the transdermal delivery effect of ethosome, indicating an intense antioxidant activity of caffeic acid and a very low response in the case of SLN. Finally, an irritation patch test conducted on 20 human volunteers demonstrated that both ethosomes and solid lipid nanoparticles can be safely applied on the skin.

14.
Sci Rep ; 11(1): 678, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436784

RESUMO

The tryptophan to kynurenine ratio (Trp/Kyn) has been proposed as a cancer biomarker. Non-invasive topical sampling of Trp/Kyn can therefore serve as a promising concept for skin cancer diagnostics. By performing in vitro pig skin permeability studies, we conclude that non-invasive topical sampling of Trp and Kyn is feasible. We explore the influence of different experimental conditions, which are relevant for the clinical in vivo setting, such as pH variations, sampling time, and microbial degradation of Trp and Kyn. The permeabilities of Trp and Kyn are overall similar. However, the permeated Trp/Kyn ratio is generally higher than unity due to endogenous Trp, which should be taken into account to obtain a non-biased Trp/Kyn ratio accurately reflecting systemic concentrations. Additionally, prolonged sampling time is associated with bacterial Trp and Kyn degradation and should be considered in a clinical setting. Finally, the experimental results are supported by the four permeation pathways model, predicting that the hydrophilic Trp and Kyn molecules mainly permeate through lipid defects (i.e., the porous pathway). However, the hydrophobic indole ring of Trp is suggested to result in a small but noticeable relative increase of Trp diffusion via pathways across the SC lipid lamellae, while the shunt pathway is proposed to slightly favor permeation of Kyn relative to Trp.


Assuntos
Biomarcadores Tumorais/metabolismo , Cinurenina/metabolismo , Neoplasias Cutâneas/diagnóstico , Pele/metabolismo , Triptofano/metabolismo , Animais , Permeabilidade da Membrana Celular , Condutividade Elétrica , Pele/citologia , Neoplasias Cutâneas/metabolismo , Suínos
15.
Pharmaceutics ; 14(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35056976

RESUMO

Non-invasive methods for early diagnosis of skin cancer are highly valued. One possible approach is to monitor relevant biomarkers such as tryptophan (Trp) and kynurenine (Kyn), on the skin surface. The primary aim of this in vitro investigation was, therefore, to examine whether reverse iontophoresis (RI) can enhance the extraction of Trp and Kyn, and to demonstrate how the Trp/Kyn ratio acquired from the skin surface reflects that in the epidermal tissue. The study also explored whether the pH of the receiver medium impacted on extraction efficiency, and assessed the suitability of a bicontinuous cubic liquid crystal as an alternative to a simple buffer solution for this purpose. RI substantially enhanced the extraction of Trp and Kyn, in particular towards the cathode. The Trp/Kyn ratio obtained on the surface matched that in the viable skin. Increasing the receiver solution pH from 4 to 9 improved extraction of both analytes, but did not significantly change the Trp/Kyn ratio. RI extraction of Trp and Kyn into the cubic liquid crystal was comparable to that achieved with simple aqueous receiver solutions. We conclude that RI offers a potential for non-invasive sampling of low-molecular weight biomarkers and further investigations in vivo are therefore warranted.

16.
Bioelectrochemistry ; 138: 107720, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33333454

RESUMO

For a better understanding of the effect of drugs and their interaction with cells and tissues, there is a need for in vitro and ex vivo model systems which enables studying these events. There are several in vitro methods available to evaluate the antioxidant activity; however, these methods do not factor in the complex in vivo physiology. Here we present an intestinal tissue modified oxygen electrode, used for the detection of the antioxidant effect of orally administered drugs in the presence of H2O2. Antioxidants are essential in the defense against oxidative stress, more specifically against reactive oxygen species such as H2O2. Due to the presence of native catalase in the intestine, with the tissue-based biosensor we were able to detect H2O2 in the range between 50 and 500 µM. The reproducibility of the sensor based on the calculated relative standard deviations was 15 ± 6%. We found that the O2 production by catalase from H2O2 was reduced in the presence of a well-known antioxidant, quinol. This indirectly detected antioxidant activity was also observed in the case of orally administered drugs with a reported anti-inflammatory effect such as mesalazine and paracetamol, while no antioxidant activity was recorded with aspirin and metformin.


Assuntos
Antioxidantes/farmacologia , Técnicas Biossensoriais/métodos , Intestinos/efeitos dos fármacos , Administração Oral , Animais , Catalase/metabolismo , Peróxido de Hidrogênio/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Oxigênio/metabolismo
17.
Mikrochim Acta ; 187(12): 656, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188446

RESUMO

Elevated amounts of reactive oxygen species (ROS) including hydrogen peroxide (H2O2) are observed in the epidermis in different skin disorders. Thus, epidermal sensing of H2O2 should be useful to monitor the progression of skin pathologies. We have evaluated epidermal sensing of H2O2 in vitro, by visualising H2O2 permeation through the skin. Skin membranes were mounted in Franz cells, and a suspension of Prussian white microparticles was deposited on the stratum corneum face of the skin. Upon H2O2 permeation, Prussian white was oxidised to Prussian blue, resulting in a pattern of blue dots. Comparison of skin surface images with the dot patterns revealed that about 74% of the blue dots were associated with hair shafts. The degree of the Prussian white to Prussian blue conversion strongly correlated with the reciprocal resistance of the skin membranes. Together, the results demonstrate that hair follicles are the major pathways of H2O2 transdermal penetration. The study recommends that the development of H2O2 monitoring on skin should aim for pathway-specific epidermal sensing, allowing micrometre resolution to detect and quantify this ROS biomarker at hair follicles.Graphical abstract.


Assuntos
Epiderme/metabolismo , Peróxido de Hidrogênio/farmacocinética , Pele/metabolismo , Animais , Biomarcadores/metabolismo , Técnicas Biossensoriais , Catalase/antagonistas & inibidores , Ferrocianetos/química , Microscopia Eletrônica de Varredura , Neovascularização Fisiológica , Espécies Reativas de Oxigênio/metabolismo , Pele/enzimologia , Suínos , Cicatrização
18.
Sci Rep ; 10(1): 17218, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057021

RESUMO

Skin is easily accessible for transdermal drug delivery and also attractive for biomarker sampling. These applications are strongly influenced by hydration where elevated hydration generally leads to increased skin permeability. Thus, favorable transdermal delivery and extraction conditions can be easily obtained by exploiting elevated skin hydration. Here, we provide a detailed in vivo and in vitro investigation of the skin hydration dynamics using three techniques based on electrical impedance spectroscopy. Good correlation between in vivo and in vitro results is demonstrated, which implies that simple but realistic in vitro models can be used for further studies related to skin hydration (e.g., cosmetic testing). Importantly, the results show that hydration proceeds in two stages. Firstly, hydration between 5 and 10 min results in a drastic skin impedance change, which is interpreted as filling of superficial voids in skin with conducting electrolyte solution. Secondly, a subtle impedance change is observed over time, which is interpreted as leveling of the water gradient across skin leading to structural relaxation/changes of the macromolecular skin barrier components. With respect to transdermal drug delivery and extraction of biomarkers; 1 h of hydration is suggested to result in beneficial and stable conditions in terms of high skin permeability and extraction efficiency.


Assuntos
Espectroscopia Dielétrica/métodos , Estado de Hidratação do Organismo/fisiologia , Fenômenos Fisiológicos da Pele , Pele/metabolismo , Animais , Espectroscopia Dielétrica/instrumentação , Humanos , Técnicas In Vitro , Suínos
19.
Anal Chem ; 92(19): 13110-13117, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32864958

RESUMO

Proteases are often used as biomarkers of many pathologies as well as of microbial contamination and infection. Therefore, extensive efforts are devoted to the development of protease sensors. Some applications would benefit from wireless monitoring of proteolytic activity at minimal cost, e.g., sensors embedded in care products like wound dressings and diapers to track wound and urinary infections. Passive (batteryless) and chipless transponders stand out among wireless sensing technologies when low cost is a requirement. Here, we developed and extensively characterized a composite material that is biodegradable but still highly stable in aqueous media, whose proteolytic degradation could be used in these wireless transponders as a transduction mechanism of proteolytic activity. This composite material consisted of a cross-linked gelatin network with incorporated caprylic acid. The digestion of the composite when exposed to proteases results in a change of its resistivity, a quantity that can be wirelessly monitored by coupling the composite to an inductor-capacitor resonator, i.e., an antenna. We experimentally proved this wireless sensor concept by monitoring the presence of a variety of proteases in aqueous media. Moreover, we also showed that detection time follows a relationship with protease concentration, which enables quantification possibilities for practical applications.


Assuntos
Ácidos Graxos/química , Gelatina/química , Peptídeo Hidrolases/análise , Máquina de Vetores de Suporte , Tecnologia sem Fio , Aspergillus/enzimologia , Ácidos Graxos/metabolismo , Gelatina/metabolismo , Peptídeo Hidrolases/metabolismo , Técnicas de Microbalança de Cristal de Quartzo
20.
J Dermatol Sci ; 99(3): 177-184, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32782183

RESUMO

BACKGROUND: Interferon-gamma (IFN-γ) represents a potent inducer for keratinocyte inflammatory and immune activation in vitro. Since tryptophan (trp) conversion to kynurenine (kyn) is involved in inflammation, the topical kyn/trp ratio may serve as a biomarker of skin inflammation. However, the trp metabolism in keratinocytes exposed to IFN-γ is not yet fully understood. OBJECTIVE: The aim of this study was to establish a human epidermis model in order to quantify cytokine and kyn/trp secretion from IFN-γ stimulated cells and tissues. Moreover, to compare the cell response of 2D-cultured keratinocytes and the 3D epidermis model. METHODS: Polycarbonate filters were used on which primary keratinocytes could attach and stratify in order to form the typical layers of reconstructed human epidermis (RHE). After IFN-γ treatment, secretion of kyn/trp was measured by high performance liquid chromatography. Gene and protein expression of indoleamine 2,3-dioxygenase 1 (IDO) was analyzed with real-time PCR and immunohistochemistry. The secretion of cytokines was quantified with ELISA. RESULTS: Trp catabolism to kyn was significantly increased (P < 0.01) in the 2D culture in response to IFN-γ treatment. Before kyn secretion, IDO was strongly upregulated (P < 0.001). IFN-γ treatment also increased the secretion of IL-6 and IL-8 from the keratinocytes. In the RHE, IDO was upregulated by IFN-γ, and kyn secretion could be detected. Interestingly, IDO expression was only present in the basal cells of the RHE. CONCLUSION: Our results suggest that IFN-γ acts as an inducer of trp degradation preferentially in undifferentiated keratinocytes, indicated by the IDO expression in the basal layer of the RHE.


Assuntos
Meios de Cultura/metabolismo , Epiderme/imunologia , Interferon gama/metabolismo , Queratinócitos/imunologia , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Epiderme/metabolismo , Humanos , Imuno-Histoquímica , Indolamina-Pirrol 2,3,-Dioxigenase/análise , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Queratinócitos/metabolismo , Cinurenina/análise , Cinurenina/metabolismo , Redes e Vias Metabólicas/imunologia , Cultura Primária de Células/métodos , Proteínas Recombinantes/metabolismo , Triptofano/análise , Triptofano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...