Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38998412

RESUMO

In this work, we focus on the prediction of the influence of CO2 laser parameters on the kerf properties of cut spruce wood. Laser kerf cutting is mainly characterized by the width of kerf and the width of the heat-affected zone, which depend on the laser power, cutting speed, and structure of the cut wood, represented by the number of cut annual rings. According to the measurement results and ANN prediction results, for lower values of the laser power (P) and cutting speed (v), the effect of annual rings (ARs) is non-negligible. The results of the sensitivity analysis show that the effect of v increases at higher energy density (E) values. With P in the range between 100 and 500 W, v values between 3 and 50 mm·s-1, and AR numbers between 3 and 11, the combination of P = 200 W and v = 50 mm·s-1, regardless of the AR value, leads to the best cut quality for spruce wood. In this paper, the main goal is to show how changes in the input parameters affect the characteristics of the cutting kerf and heat-affected zones for all possible input parameter values.

2.
Polymers (Basel) ; 13(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34301041

RESUMO

The effects of using 100% larch bark (Larix decidua Mill) as a raw material for composite boards on the thermophysical properties of this innovative material were investigated in this study. Panels made of larch bark with 4-11 mm and 10-30 mm particle size, with ground bark oriented parallel and perpendicular to the panel's plane at densities varying from 350 to 700 kg/m3 and bonded with urea-formaldehyde adhesive were analyzed for thermal conductivity, thermal resistivity and specific heat capacity. It was determined that there was a highly significant influence of bulk density on the thermal conductivity of all the panels. With an increase in the particle size, both parallel and perpendicular to the panel´s plane direction, the thermal conductivity also increased. The decrease of thermal diffusivity was a consequence of the increasing particle size, mostly in the parallel orientation of the bark particles due to the different pore structures. The specific heat capacity is not statistically significantly dependent on the density, particle size, glue amount and particle orientation.

3.
Materials (Basel) ; 12(8)2019 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-31010011

RESUMO

The results of research into utilizing grinded beech bark in order to substitute commonly used fillers in urea formaldehyde (UF) adhesive mixtures to bond plywood are presented in the present study. Four test groups of plywood with various adhesive mixtures were manufactured under laboratory conditions and used for experimentation. Plywood made using the same technology, with the common filler (technical flour), was used as a reference material. Three different concentrations of grinded beech bark were used. The thermal conductivity of the fillers used, viscosity and its time dependence, homogeneity and the dispersion performance of fillers were evaluated in the analysis of adhesive mixture. The time necessary for heating up the material during the pressing process was a further tested parameter. The produced plywood was analyzed in terms of its modulus of elasticity, bending strength, perpendicular tensile strength and free formaldehyde emissions. Following the research results, beech bark can be characterized as an ecologically friendly alternative to technical flour, shortening the time of pressing by up to 27%. At the same time, in terms of the statistics, the mechanical properties and stability of the material changed insignificantly, and the formaldehyde emissions reduced significantly, by up to 74%. The utilization of bark was in compliance with long-term sustainability, resulting in a decrease in the environmental impact of waste generated during the wood processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA