Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919087

RESUMO

Microgels composed of stimuli responsive polymers have attracted worthwhile interest as model colloids for theorethical and experimental studies and for nanotechnological applications. A deep knowledge of their behaviour is fundamental for the design of new materials. Here we report the current understanding of a dual responsive microgel composed of poly(N-isopropylacrylamide) (PNIPAM), a temperature sensitive polymer, and poly(acrylic acid) (PAAc), a pH sensitive polymer, at different temperatures, PAAc contents, concentrations, solvents and pH. The combination of multiple techniques as Dynamic Light Scattering (DLS), Raman spectroscopy, Small Angle Neutron Scattering (SANS), rheology and electrophoretic measurements allow to investigate the hydrodynamic radius behaviour across the typical Volume Phase Transition (VPT), the involved molecular mechanism and the internal particle structure together with the viscoelastic properties and the role of ionic charge in the aggregation phenomena.

2.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919803

RESUMO

The phase behaviour of soft colloids has attracted great attention due to the large variety of new phenomenologies emerging from their ability to pack at very high volume fractions. Here we report rheological measurements on interpenetrated polymer network microgels composed of poly(N-isopropylacrylamide) (PNIPAM) and polyacrylic acid (PAAc) at fixed PAAc content as a function of weight concentration. We found three different rheological regimes characteristic of three different states: a Newtonian shear-thinning fluid, an attractive glass characterized by a yield stress, and a jamming state. We discuss the possible molecular mechanisms driving the formation of these states.


Assuntos
Resinas Acrílicas/química , Vidro/química , Reologia , Hidrodinâmica , Resistência ao Cisalhamento , Estresse Mecânico
3.
Polymers (Basel) ; 14(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35012137

RESUMO

Stimuli-responsive microgels have recently attracted great attention in fundamental research as their soft particles can be deformed and compressed at high packing fractions resulting in singular phase behaviours. Moreover, they are also well suited for a wide variety of applications such as drug delivery, tissue engineering, organ-on-chip devices, microlenses fabrication and cultural heritage. Here, thermoresponsive and pH-sensitive cross-linked microgels, composed of interpenetrating polymer networks of poly(N-isopropylacrylamide) (PNIPAM) and poly(acrylic acid) (PAAc), are synthesized by a precipitation polymerization method in water and investigated through differential scanning calorimetry in a temperature range across the volume phase transition temperature of PNIPAM microgels. The phase behaviour is studied as a function of heating/cooling rate, concentration, pH and PAAc content. At low concentrations and PAAc contents, the network interpenetration does not affect the transition temperature typical of PNIPAM microgel in agreement with previous studies; on the contrary, we show that it induces a marked decrease at higher concentrations. DSC analysis also reveals an increase of the overall calorimetric enthalpy with increasing concentration and a decrease with increasing PAAc content. These findings are discussed and explained as related to emerging aggregation processes that can be finely controlled by properly changing concentration, PAAc content an pH. A deep analysis of the thermodynamic parameters allows to draw a temperature-concentration state diagram in the investigated concentration range.

4.
ACS Appl Polym Mater ; 2(7): 2791-2801, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32685926

RESUMO

Microgel particles have emerged in the past few years as a favorite model system for fundamental science and for innovative applications ranging from the industrial to biomedical fields. Despite their potentialities, no works so far have focused on the application of microgels for cultural heritage preservation. Here we show their first use for this purpose, focusing on wet paper cleaning. Exploiting their retentive properties, microgels are able to clean paper, ensuring more controlled water release from the gel matrix, in analogy to their macroscopic counterpart, i.e., hydrogels. However, differently from these, the reduced size of microgels makes them suitable to efficiently penetrate in the porous structure of the paper and to easily adapt to the irregular surfaces of the artifacts. To test their cleaning abilities, we prepare microgels made of Gellan gum, a natural and widespread material already used as a hydrogel for paper cleaning, and apply them to modern and ancient paper samples. Combining several diagnostic methods, we show that microgels performances in the removal of cellulose degradation byproducts for ancient samples are superior to commonly employed hydrogels and water bath treatments. This is due to the composition and morphology of ancient paper, which facilitates microgels penetration. For modern paper cleaning, performances are at least comparable to the other methods. In all cases, the application of microgels takes place on a time scale of a few minutes, opening the way for widespread use as a rapid and efficient cleaning protocol.

6.
J Colloid Interface Sci ; 545: 210-219, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30889412

RESUMO

HYPOTHESIS: The peculiar swelling behaviour of poly(N-isopropylacrylamide) (PNIPAM)4-based responsive microgels provides the possibility to tune both softness and volume fraction with temperature, making these systems of great interest for technological applications and theoretical implications. Their intriguing phase diagram can be even more complex if poly(acrylic acid) (PAAc)5 is interpenetrated within PNIPAM network to form Interpenetrating Polymer Network (IPN)6 microgels that exhibit an additional pH-sensitivity. The effect of the PAAc/PNIPAM polymeric ratio on both swelling capability and dynamics is still matter of investigation. EXPERIMENTS: Here we investigate the role of PAAc in the behaviour of IPN microgels across the volume phase transition through dynamic light scattering (DLS),7 transmission electron microscopy (TEM)8 and electrophoretic measurements as a function of microgel concentration and pH. FINDINGS: Our results highlight that aggregation is favored at increasing weight concentration, PAAc content and pH and that a crossover PAAc content CPAAc∗9 exists above which the ionic charges on the microgel become relevant. Moreover we show that the softness of IPN microgels can be tuned ad hoc by changing the PAAc/PNIPAM ratio. These findings provide new insights into the possibility to control experimentally aggregation properties, charge and softness of IPN microgels by varying PAAc content.

7.
Front Cell Neurosci ; 13: 41, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30853898

RESUMO

Extracellular-released vesicles (EVs), such as microvesicles (MV) and exosomes (Exo) provide a new type of inter-cellular communication, directly transferring a ready to use box of information, consisting of proteins, lipids and nucleic acids. In the nervous system, EVs participate to neuron-glial cross-talk, a bidirectional communication important to preserve brain homeostasis and, when dysfunctional, involved in several CNS diseases. We investigated whether microglia-derived EVs could be used to transfer a protective phenotype to dysfunctional microglia in the context of a brain tumor. When MV, isolated from microglia stimulated with LPS/IFNγ were brain injected in glioma-bearing mice, we observed a phenotype switch of tumor associated myeloid cells (TAMs) and a reduction of tumor size. Our findings indicate that the MV cargo, which contains upregulated transcripts for several inflammation-related genes, can transfer information in the brain of glioma bearing mice modifying microglial gene expression, reducing neuronal death and glioma invasion, thus promoting the recovery of brain homeostasis.

8.
Soft Matter ; 13(30): 5185-5193, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28664963

RESUMO

Microgel suspensions of an interpenetrated Polymer Network (IPN) of PNIPAM and PAAc in D2O have been investigated through dynamic light scattering as a function of temperature, pH and concentration across the Volume Phase Transition (VPT). The dynamics of the system is slowed down under H/D isotopic substitution due to different balance states between polymer/polymer and polymer/solvent interactions suggesting the crucial role played by H-bonding. The swelling behavior, reduced with respect to PNIPAM and water, has been described by the Flory-Rehner theory, tested for PNIPAM microgel and successfully expanded to higher order for IPN microgels. Moreover the concentration dependence of the relaxation time at neutral pH has highlighted two different routes to approach the glass transition: Arrhenius and super-Arrhenius (Vogel Fulcher Tammann) respectively below and above the VPT and a fragility plot has been derived. Fragility can be tuned by changing temperature: across the VPT particles undergo a transition from soft-strong to stiff-fragile.

9.
J Phys Chem B ; 121(17): 4576-4582, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28376301

RESUMO

The time evolution of both dynamic and static structure factors of a charged colloidal clay, Laponite, dispersed in both H2O and D2O solvents has been investigated through multiangle dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) as a function of weight concentration. The aging phenomenology and the formation of arrested states, both gel and glass, are preserved in D2O, while the dynamics is slowed down with respect to water. These findings are important to understand the role played by the solvent in the interparticle interactions and for techniques such as neutron scattering and nuclear magnetic resonance that allow for the extension of the accessible scattering vectors and time scales.

10.
Biochim Biophys Acta Gen Subj ; 1861(2): 450-456, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27755975

RESUMO

BACKGROUND: A set of engineered ferritin mutants from Archaeoglobus fulgidus (Af-Ft) and Pyrococcus furiosus (Pf-Ft) bearing cysteine thiols in selected topological positions inside or outside the ferritin shell have been obtained. The two apo-proteins were taken as model systems for ferritin internal cavity accessibility in that Af-Ft is characterized by the presence of a 45Å wide aperture on the protein surface whereas Pf-Ft displays canonical (threefold) channels. METHODS: Thiol reactivity has been probed in kinetic experiments in order to assess the protein matrix permeation properties towards the bulky thiol reactive DTNB (5,5'-dithiobis-2-nitrobenzoic acid) molecule. RESULTS: Reaction of DTNB with thiols was observed in all ferritin mutants, including those bearing free cysteine thiols inside the ferritin cavity. As expected, a ferritin mutant from Pf-Ft, in which the cysteine thiol is on the outer surface displays the fastest binding kinetics. In turn, also the Pf-Ft mutant in which the cysteine thiol is placed within the internal cavity, is still capable of full stoichiometric DTNB binding albeit with an almost 200-fold slower rate. The behaviour of Af-Ft bearing a cysteine thiol in a topologically equivalent position in the internal cavity was intermediate among the two Pf-Ft mutants. CONCLUSIONS AND GENERAL SIGNIFICANCE: The data thus obtained indicate clearly that the protein matrix in archaea ferritins does not provide a significant barrier against bulky, negatively charged ligands such as DTNB, a finding of relevance in view of the multiple biotechnological applications of these ferritins that envisage ligand encapsulation within the internal cavity.


Assuntos
Archaea/metabolismo , Ácido Ditionitrobenzoico/metabolismo , Ferritinas/metabolismo , Archaea/genética , Archaeoglobus fulgidus/genética , Archaeoglobus fulgidus/metabolismo , Cisteína/metabolismo , Ferritinas/genética , Cinética , Ligantes , Mutação/genética , Pyrococcus furiosus/genética , Pyrococcus furiosus/metabolismo , Compostos de Sulfidrila/metabolismo
11.
J Chem Phys ; 143(11): 114904, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26395735

RESUMO

The temperature dependence of the local intra-particle structure of colloidal microgel particles, composed of interpenetrated polymer networks, has been investigated by small-angle neutron scattering at different pH and concentrations, in the range (299÷315) K, where a volume phase transition from a swollen to a shrunken state takes place. Data are well described by a theoretical model that takes into account the presence of both interpenetrated polymer networks and cross-linkers. Two different behaviors are found across the volume phase transition. At neutral pH and T ≈ 307 K, a sharp change of the local structure from a water rich open inhomogeneous interpenetrated polymer network to a homogeneous porous solid-like structure after expelling water is observed. Differently, at acidic pH, the local structure changes almost continuously. These findings demonstrate that a fine control of the pH of the system allows to tune the sharpness of the volume-phase transition.

12.
Soft Matter ; 11(3): 466-71, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25406421

RESUMO

The aging dynamics of a colloidal glass has been studied by multiangle dynamic light scattering, neutron spin echo, X-ray photon correlation spectroscopy and molecular dynamics simulations. The two relaxation processes, microscopic (fast) and structural (slow), have been investigated in an unprecedentedly wide range of time and length scales covering both ergodic and nonergodic regimes. The microscopic relaxation time remains diffusive at all length scales across the glass transition scaling with wavevector Q as Q(-2). The length-scale dependence of structural relaxation time changes from diffusive, characterized by a Q(-2)-dependence in the early stages of aging, to a Q(-1)-dependence in the full aging regime which marks a discontinuous hopping dynamics. Both regimes are associated with a stretched behaviour of the correlation functions. We expect these findings to provide a general description of both relaxations across the glass transition.

13.
Nat Commun ; 5: 4049, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24887086

RESUMO

Colloidal suspensions are characterized by a variety of microscopic interactions, which generate unconventional phase diagrams encompassing fluid, gel and glassy states and offer the possibility to study new phase and/or state transitions. Among these, glass-glass transitions are rare to be found, especially at ambient conditions. Here, through a combination of dilution experiments, X-ray photon correlation spectroscopy, small angle X-ray scattering, rheological measurements and Monte Carlo simulations, we provide evidence of a spontaneous glass-glass transition in a colloidal clay. Two different glassy states are distinguished with evolving waiting time: a first one, dominated by long-range screened Coulombic repulsion (Wigner glass) and a second one, stabilized by orientational attractions (Disconnected House of Cards glass), occurring after a much longer time. These findings may have implications for heterogeneously charged systems out-of-equilibrium and for applications where a fine control of the local order and/or long term stability of the amorphous materials are required.

14.
Soft Matter ; 10(25): 4513-21, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24817524

RESUMO

Clay-polymer compounds have recently attracted increasing attention due to their intriguing physical properties in colloidal science and their rheological non-trivial behaviour in technological applications. Aqueous solutions of Laponite clay spontaneously age from a liquid up to an arrested state of different nature (gel or glass) depending on the colloidal volume fraction and ionic strength. We have investigated, through dynamic light scattering, how the aging dynamics of Laponite dispersions at fixed clay concentration (Cw = 2.0%) is modified by the addition of various amounts of poly(ethylene oxide) (PEO) (CPEO = (0.05 ÷ 0.50) %) at two different molecular weights (Mw = 100 kg mol(-1) and Mw = 200 kg mol(-1)). A surprising and intriguing phenomenon has been observed: the existence of a critical polymer concentration C that discriminates between two different aging dynamics. With respect to pure Laponite systems the aging will be assisted (faster) or hindered (slower) for PEO concentrations respectively lower (CPEO < C) or higher (CPEO > C) than the critical concentration. In this way a control on the aging dynamics of PEO-Laponite systems is obtained. A possible explanation based on the balance of competitive mechanisms related to the progressive saturation of the clay surface by polymers is proposed. This study shows how a real control on the aging speed of the PEO-Laponite system is at hand and renders possible a real control of the complex interparticle interaction potential.

15.
Nat Mater ; 10(1): 56-60, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21151164

RESUMO

The relevance of anisotropic interactions in colloidal systems has recently emerged in the context of the rational design of new soft materials. Patchy colloids of different shapes, patterns and functionalities are considered the new building blocks of a bottom-up approach toward the realization of self-assembled bulk materials with predefined properties. The ability to tune the interaction anisotropy will make it possible to recreate molecular structures at the nano- and micro-scales (a case with tremendous technological applications), as well as to generate new unconventional phases, both ordered and disordered. Recent theoretical studies suggest that the phase diagram of patchy colloids can be significantly altered by limiting the particle coordination number (that is, valence). New concepts such as empty liquids­liquid states with vanishing density­and equilibrium gels­arrested networks of bonded particles, which do not require an underlying phase separation to form­have been formulated. Yet no experimental evidence of these predictions has been provided. Here we report the first observation of empty liquids and equilibrium gels in a complex colloidal clay, and support the experimental findings with numerical simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...