Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 45(3): 750-753, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32004301

RESUMO

Coherent-wake plasma emission induced by ultrashort mid-infrared laser pulses on a solid target is shown to give rise to high-brightness, high-order harmonic radiation, offering a promising source of attosecond pulses and a probe for ultrafast subrelativistic plasma dynamics. With 80-fs, 0.2-TW pulses of 3.9-µm radiation used as a driver, optical harmonics up to the 34th order are detected, with their spectra stretching from the mid-infrared region to the extreme ultraviolet region. The harmonic spectrum is found to be highly sensitive to the chirp of the driver. Particle-in-cell analysis of this effect suggests, in agreement with the generic scenario of coherent-wake emission, that optical harmonics are radiated as trains of extremely short, attosecond ultraviolet pulses with a pulse-to-pulse interval varying over the pulse train. A positive chirp of the driver pulse can partially compensate for this variation in the interpulse separation, allowing harmonics of the highest orders to be generated in the plasma emission spectrum.

2.
Opt Lett ; 43(22): 5571-5574, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30439897

RESUMO

High-order harmonic generation (HHG) in plasmas induced by ultrashort, relativistic-intensity laser pulses on solid surfaces can provide an efficient source of attosecond pulses and opens routes toward new regimes of laser-matter interactions, x-ray generation, laser particle acceleration, and relativistic nonlinear optics. However, field intensities in the range of Irel∼1019 W/cm2 are typically needed to achieve the relativistic regime of HHG in experiments with near-infrared laser pulses. Here, we show that, in the mid-infrared range, due to the λ-2 scaling of Irel with the driver wavelength λ, relativistic HHG can be observed at much lower levels of laser field intensities. High-peak-power 80-fs, 3.9-µm pulses are focused in our experiments on a solid surface to provide field intensities in the range of 1017 W/cm2. Remarkably, this level of field intensities, considered as low by the standards of relativistic optics in the near infrared, is shown to be sufficient for generation of high-order harmonics with signature properties of relativistic HHG-beam directionality, spectra with extended plateaus, and a high HHG yield sustained for both p- and s-polarized driver fields.

3.
Nanoscale ; 10(8): 3589-3605, 2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-29419830

RESUMO

Resonance interaction between a molecular transition and a confined electromagnetic field can reach the coupling regime where coherent exchange of energy between light and matter becomes reversible. In this case, two new hybrid states separated in energy are formed instead of independent eigenstates, which is known as Rabi splitting. This modification of the energy spectra of the system offers new possibilities for controlled impact on various fundamental properties of coupled matter (such as the rate of chemical reactions and the conductivity of organic semiconductors). To date, the strong coupling regime has been demonstrated in many configurations under different ambient conditions. However, there is still no comprehensive approach to determining parameters for achieving the strong coupling regime for a wide range of practical applications. In this review, a detailed analysis of various systems and corresponding conditions for reaching strong coupling is carried out and their advantages and disadvantages, as well as the prospects for application, are considered. The review also summarizes recent experiments in which the strong coupling regime has led to new interesting results, such as the possibility of collective strong coupling between X-rays and matter excitation in a periodic array of Fe isotopes, which extends the applications of quantum optics; a strong amplification of the Raman scattering signal from a coupled system, which can be used in surface-enhanced and tip-enhanced Raman spectroscopy; and more efficient second-harmonic generation from the low polaritonic state, which is promising for nonlinear optics. The results reviewed demonstrate great potential for further practical applications of strong coupling in the fields of photonics (low-threshold lasers), quantum communications (switches), and biophysics (molecular fingerprinting).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA