Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photodiagnosis Photodyn Ther ; 46: 104047, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503388

RESUMO

BACKGROUND: Hypoxia is a characteristic feature of many tumors. It promotes tumor proliferation, metastasis, and invasion and can reduce the effectiveness of many types of cancer treatment. OBJECTIVE: The aim of this study was to investigate the pharmacokinetics of methylene blue (MB) and its impact on the tumor oxygenation level at mouse Lewis lung carcinoma (LLC) model using spectroscopic methods. APPROACH: The pharmacokinetics of MB were studied qualitatively and quantitatively using video fluorescence imaging and fluorescence spectroscopy. The degree of hemoglobin oxygenation in vivo was examined by calculating hemoglobin optical absorption from the measured diffuse reflectance spectra. The distribution of MB fluorescence and the lifetime of NADH were analyzed using laser scanning microscopy and fluorescence lifetime imaging microscopy (FLIM) to assess cellular metabolism. RESULTS: After intravenous administration of MB at 10-20 mg/kg, it quickly transitioned in the tumor to a colorless leucomethylene blue, with maximum accumulation in the tumor occurring after 5-10 min. A concentration of 10 mg/kg resulted in a relative increase of the tumor oxygenation level for small tumors (volume 50-75 mm3) and normal tissue 120 min after the introduction of MB. A shift in tumor metabolism towards oxidative phosphorylation (according to the lifetime of the NADH coenzyme) was measured using FLIM method after intravenous administration of 10 mg/kg of MB. Intravenous administration of MB at 20 mg/kg results in a long-term decrease in oxygenation, which persisted for at least 120 min after the administration and did not return to its initial level. CONCLUSIONS: Administration of MB at 10 mg/kg shown to increase tumor oxygenation level, potentially leading to more effective antitumor therapy. However, at higher doses (20 mg/kg), MB may cause long-term decrease in oxygenation.

2.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38256907

RESUMO

High-grade gliomas are considered an incurable disease. Despite all the various therapy options available, patient survival remains low, and the tumor usually returns. Tumor resistance to conventional therapy and stimulation of the migratory activity of surviving cells are the main factors that lead to recurrent tumors. When developing new treatment approaches, the effect is most often evaluated on standard and phenotypically depleted cancer cell lines. Moreover, there is much focus on the anti-proliferative effect of such therapies without considering the possible stimulation of migratory activity. In this paper, we studied how glioma cell migration changes after exposure to bi-(AID-1-T), an anti-proliferative aptamer. We investigated the effect of this aptamer on eight human glioma cell cultures (Grades III and IV) that were derived from patients' tumor tissue; the difference between primary and recurrent tumors was taken into account. Despite its strong anti-proliferative activity, bi-(AID-1-T) was shown to induce migration of recurrent tumor cells. This result shows the importance of studying the effect of therapeutic molecules on the invasive properties of glioma tumor cells in order to reduce the likelihood of inducing tumor recurrence.

3.
Membranes (Basel) ; 13(10)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37888016

RESUMO

The SaNPF6.3 gene, a putative ortholog of the dual-affinity nitrate (NO3-) transporter gene AtNPF6.3/AtNRT1.1 from Arabidopsis thaliana, was cloned from the euhalophyte Suaeda altissima. The nitrate transporting activity of SaNPF6.3 was studied by heterologous expression of the gene in the yeast Hansenula (Ogataea) polymorpha mutant strain Δynt1 lacking the original nitrate transporter. Expression of SaNPF6.3 in Δynt1 cells rescued their ability to grow on the selective medium in the presence of nitrate and absorb nitrate from this medium. Confocal laser microscopy of the yeast cells expressing the fused protein GFP-SaNPF6.3 revealed GFP (green fluorescent protein) fluorescence localized predominantly in the cytoplasm and/or vacuoles. Apparently, in the heterologous expression system used, only a relatively small fraction of the GFP-SaNPF6.3 reached the plasma membrane of yeast cells. In S. altissima plants grown in media with either low (0.5 mM) or high (15 mM) NO3-; concentrations, SaNPF6.3 was expressed at various ontogenetic stages in different organs, with the highest expression levels in roots, pointing to an important role of SaNPF6.3 in nitrate uptake. SaNPF6.3 expression was induced in roots of nitrate-deprived plants in response to raising the nitrate concentration in the medium and was suppressed when the plants were transferred from sufficient nitrate to the lower concentration. When NaCl concentration in the nutrient solution was elevated, the SaNPF6.3 transcript abundance in the roots increased at the low nitrate concentration and decreased at the high one. We also determined nitrate and chloride concentrations in the xylem sap excreted by detached S. altissima roots as a function of their concentrations in the root medium. Based on a linear increase in Cl- concentrations in the xylem exudate as the external Cl- concentration increased and the results of SaNPF6.3 expression experiments, we hypothesize that SaNPF6.3 is involved in chloride transport along with nitrate transport in S. altissima plants.

4.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834501

RESUMO

Equipment scaling leads to reduced production efficiency in a wide range of industrial applications worldwide. Various antiscaling agents are currently commonly used to mitigate this problem. However, irrespective of their long and successful application in water treatment technologies, little is known about the mechanisms of scale inhibition, particularly the localization of scale inhibitors on scale deposits. The lack of such knowledge is a limiting factor in the development of applications for antiscalants. Meanwhile, fluorescent fragments integrated into scale inhibitor molecules have provided a successful solution to the problem. The focus of this study is, therefore, on the synthesis and investigation of a novel fluorescent antiscalant: (2-(6-morpholino-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)yl)ethylazanediyl)bis(methylenephosphonic acid) (ADMP-F) which is an analog of the commercial antiscalant: aminotris(methylenephosphonic acid) (ATMP). ADMP-F has been found to effectively control the precipitation of CaCO3 and CaSO4 in solution and is a promising tracer for organophosphonate scale inhibitors. ADMP-F was compared with two other fluorescent antiscalants-polyacrylate (PAA-F1) and bisphosphonate (HEDP-F)-and was found to be highly effective: PAA-F1 > ADMP-F >> HEDP-F (CaCO3) and PAA-F1 > ADMP-F > HEDP-F (CaSO4·2H2O). The visualization of the antiscalants on the deposits provides unique information on their location and reveals differences in the "antiscalant-deposit" interactions for scale inhibitors of different natures. For these reasons, a number of important refinements to the mechanisms of scale inhibition are proposed.


Assuntos
Ácido Etidrônico , Purificação da Água
5.
Membranes (Basel) ; 12(10)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36295761

RESUMO

Membrane scaling is a serious problem in electrodialysis. A widely used technique for controlling scale deposition in water treatment technologies is the application of antiscalants (AS). The present study reports on gypsum scale inhibition in electrodialysis cell by the two novel ASs: fluorescent-tagged bisphosphonate 1-hydroxy-7-(6-methoxy-1,3-dioxo-1Hbenzo[de]isoquinolin-2(3H)-yl)heptane-1,1-diyl-bis(phosphonic acid), HEDP-F and fluorescein-tagged polyacrylate, PAA-F2 (molecular mass 4000 Da) monitored by chronopotentiometry and fluorescent microscopy. It was found that cation-exchange membrane MK-40 scaling is sufficiently reduced by both ASs, used in 10-6 mol·dm-3 concentrations. PAA-F2 at these concentrations was found to be more efficient than HEDP-F. At the same time, PAA-F2 reveals gypsum crystals' habit modification, while HEDP-F does not noticeably affect the crystal form of the deposit. The strong auto-luminescence of MK-40 hampers visualization of both PAA-F2 and HEDP-F on the membrane surface. Nevertheless, PAA-F2 is proved to localize partly on the surface of gypsum crystals as a molecular adsorption layer, and to change their crystal habit. Crystal surface coverage by PAA-F2 appears to be nonuniform. Alternatively, HEDP-F localizes on the surface of a deposit tentatively in the form of [Ca-HEDP-F]. The proposed mechanisms of action are formulated and discussed. The application of antiscalants in electrodialysis for membrane scaling mitigation is demonstrated to be very promising.

6.
Colloids Surf B Biointerfaces ; 219: 112856, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36150237

RESUMO

Gas-liquid interfaces are reaching a particular interest in biomedicine. Microbubbles, ultrasound contrast agents of clinical routine, gained increasing attention as theranostic platforms due to the preserved acoustic response, drug conjugation capabilities, and applicability in biological barrier opening. A combination of microbubbles and photodynamic therapy agents can enhance the photodynamic effect, yet the evaluation of agent conjugation on microbubble stabilization and photodynamic effect is needed. Hence, two commercially available phthalocyanine photosensitizers - Holosens® (ZnPc) and Photosens® (AlPc) - were coupled with bovine serum albumin before microbubble synthesis. We demonstrated an albumin: phthalocyanine ratio of 1:1 and covalent attachment for ZnPc, a ratio of 1:3 with electrostatic binding for AlPc. Submicron-sized microbubbles (air- and SF6- filled) had a diameter of 0.8 µm. Albumin-phthalocyanine conjugates increased the microbubble concentration and shelf-life stability compared to plain ones. We hypothesized that phthalocyanine fluorescence lifetime values decreased after conjugation with microbubbles due to narrow distance between conjugates in the shell. Agents based on AlPc demonstrated higher photodynamic activity than agents based on ZnPc, and microbubbles preserved acoustic stability in human blood plasma. The biodistribution of AlPc-conjugated microbubbles was evaluated. We conclude that our microbubble platforms demonstrate greater photodynamic activity and prolonged stability for further applications in photodynamic therapy.

7.
Methods Appl Fluoresc ; 10(2)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35263723

RESUMO

Upconversion materials have several advantages for many applications due to their great potential in converting infrared light to visible. For practical use, it is necessary to achieve high intensity of UC luminescence, so the studies of the optimal synthesis parameters for upconversion nanoparticles are still going on. In the present work, we analyzed the synthesis temperature effect on the efficiency and luminescence decay ofß-NaGd0.78Yb0.20Er0.02F4(15-25 nm) upconversion nanoparticles with hexagonal crystal structure synthesized by anhydrous solvothermal technique. The synthesis temperature was varied in the 290 °C-320 °C range. The synthesis temperature was shown to have a significant influence on the upconversion luminescence efficiency and decay time. The coherent scattering domain linearly depended on the synthesis temperature and was in the range 13.1-22.3 nm, while the efficiency of the upconversion luminescence increases exponentially from 0.02 to 0.10% under 1 W cm-2excitation. For a fundamental analysis of the reasons for the upconversion luminescence intensity dependence on the synthesis temperature, it was proposed to use the maximum entropy method for luminescence decay kinetics processing. This method does not require a preliminary setting of the number of exponents and, due to this, makes it possible to estimate additional components in the luminescence decay kinetics, which are attributed to different populations of rare-earth ions in different conditions. Two components in the green luminescence and one component in the red luminescence decay kinetics were revealed for nanoparticles prepared at 290 °C-300 °C. An intense short and a weak long component in green luminescence decay kinetics could be associated with two different populations of ions in the surface quenching layer and the crystal core volume. With an increase in the synthesis temperature, the second component disappears, and the decay time increases due to an increase in the number of ions in the crystal core volume and a more uniform distribution of dopants.

8.
Membranes (Basel) ; 12(2)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35207115

RESUMO

Calcium carbonate scaling in reverse osmosis (RO) desalination process is studied in the presence of two novel fluorescent-tagged scale inhibitors 1,8-naphthalimide-tagged polyacrylate (PAA-F1) and 1-hydroxy-7-(6-methoxy-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)heptane-1,1-diyl-bis(phosphonic acid) (HEDP-F) by fluorescent microscopy (FM) and scanning electron microscopy (SEM). Both antiscalants diminished the mean size of calcite crystals relative to the blank experiment. The behavior and localization of HEDP-F and PAA-F1 during calcite scale formation on membrane surface was found to be significantly different from the distribution in similar RO experiments with gypsum, reported earlier. In the former case, both antiscalants are concentrated exactly on the surface of calcium carbonate crystals, while in the latter one they form their own phases (Ca-HEDP-F and Ca-PAA-F1) and are not detected on gypsum scale. The difference is interpreted in terms of interplay between background calcium concentration and sparingly soluble calcium salts' solubility. HEDP-F reveals slightly higher efficiency than PAA-F1 against calcite scale formation, while PAA-F exhibits a higher ability to change calcite morphology. It is demonstrated that there is a lack of correlation between antiscaling efficacy and ability of antiscalant to change calcium carbonate morphology in a particular case study. An application of fluorescent-tagged antiscalants in RO experiments provides a unique possibility to track the scale inhibitor molecules' localization during calcite scale formation. Fluorescent-tagged antiscalants are presumed to become a very powerful tool in membrane scaling inhibition studies.

9.
Cancers (Basel) ; 13(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34680384

RESUMO

Near-infrared phototherapy has great therapeutic potential for cancer treatment. However, for efficient application, in vivo photothermal agents should demonstrate excellent stability in blood and targeted delivery to pathological tissue. Here, we demonstrated that stable bovine serum albumin-coated gold mini nanorods conjugated to a HER2-specific designed ankyrin repeat protein, DARPin_9-29, selectively accumulate in HER2-positive xenograft tumors in mice and lead to a strong reduction in the tumor size when being illuminated with near-infrared light. The results pave the way for the development of novel DARPin-based targeted photothermal therapy of cancer.

10.
Biosensors (Basel) ; 11(9)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34562930

RESUMO

The determination of pH in live cells and tissues is of high importance in physiology and cell biology. In this report, we outline the process of the creation of SypHerExtra, a genetically encoded fluorescent sensor that is capable of measuring extracellular media pH in a mildly alkaline range. SypHerExtra is a protein created by fusing the previously described pH sensor SypHer3s with the neurexin transmembrane domain that targets its expression to the cytoplasmic membrane. We showed that with excitation at 445 nm, the fluorescence lifetime of both SypHer3s and SypHerExtra strongly depend on pH. Using FLIM microscopy in live eukaryotic cells, we demonstrated that SypHerExtra can be successfully used to determine extracellular pH, while SypHer3s can be applied to measure intracellular pH. Thus, these two sensors are suitable for quantitative measurements using the FLIM method, to determine intracellular and extracellular pH in a range from pH 7.5 to 9.5 in different biological systems.


Assuntos
Técnicas Biossensoriais , Fluorescência , Proteínas de Fluorescência Verde , Humanos , Concentração de Íons de Hidrogênio , Microscopia de Fluorescência
11.
Biology (Basel) ; 10(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209345

RESUMO

Until now, the ability to reversibly halt cellular processes has been limited to cryopreservation and several forms of anabiosis observed in living organisms. In this paper we show that incubation of living cells with a solution containing ~50 mM neodymium induces a rapid shutdown of intracellular organelle movement and all other evidence of active metabolism. We have named this state REEbernation (derived from the terms REE (rare earth elements) and hibernation) and found that the process involves a rapid replacement of calcium with neodymium in membranes and organelles of a cell, allowing it to maintain its shape and membrane integrity under extreme conditions, such as low pressure. Furthermore, phosphate exchange is blocked as a result of non-dissolvable neodymium salts formation, which "discharged" the cell. We further showed that REEbernation is characterized by an immediate cessation of transcriptional activity in observed cells, providing an intriguing opportunity to study a snapshot of gene expression at a given time point. Finally, we found that the REEbernation state is reversible, and we could restore the metabolism and proliferation capacity of the cells. The REEbernation, in addition to being an attractive model to further investigate the basic mechanisms of cell metabolism control, also provides a new method to reversibly place a cell into "on-hold" mode, opening opportunities to develop protocols for biological samples fixation with a minimum effect on the omics profile for biomedical needs.

12.
Biomedicines ; 9(2)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557383

RESUMO

Atherosclerosis is associated with a chronic local inflammatory process in the arterial wall. Our previous studies have demonstrated the altered proinflammatory activity of circulating monocytes in patients with atherosclerosis. Moreover, atherosclerosis progression and monocyte proinflammatory activity were associated with mitochondrial DNA (mtDNA) mutations in circulating monocytes. The role of mitochondria in the immune system cells is currently well recognized. They can act as immunomodulators by releasing molecules associated with bacterial infection. We hypothesized that atherosclerosis can be associated with changes in the mitochondrial function of circulating monocytes. To test this hypothesis, we performed live staining of the mitochondria of CD14+ monocytes from healthy donors and atherosclerosis patients with MitoTracker Orange CMTMRos dye, which is sensitive to mitochondrial membrane potential. The intensity of such staining reflects mitochondrial functional activity. We found that parts of monocytes in the primary culture were characterized by low MitoTracker staining (MitoTracker-low monocytes). Such cells were morphologically similar to cells with normal staining and able to metabolize 5-aminolevulinic acid and accumulate the heme precursor protoporphyrin IX (PplX), indicative of partially preserved mitochondrial function. We assessed the proportion of MitoTracker-low monocytes in the primary culture for each study subject and compared the results with other parameters, such as monocyte ability to lipopolysaccharide (LPS)-induced proinflammatory activation and the intima-media thickness of carotid arteries. We found that the proportion of MitoTracker-low monocytes was associated with the presence of atherosclerotic plaques. An increased number of such monocytes in the primary culture was associated with a reduced proinflammatory activation ability of cells. The obtained results indicate the presence of circulating monocytes with mitochondrial dysfunction and the association of such cells with chronic inflammation and atherosclerosis development.

13.
Cancers (Basel) ; 12(10)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081407

RESUMO

We report here a combined anti-cancer therapy directed toward HER2 and EpCAM, common tumor-associated antigens of breast cancer cells. The combined therapeutic effect is achieved owing to two highly toxic proteins-a low immunogenic variant of Pseudomonas aeruginosa exotoxin A and ribonuclease Barnase from Bacillus amyloliquefaciens. The delivery of toxins to cancer cells was carried out by targeting designed ankyrin repeat proteins (DARPins). We have shown that both target agents efficiently accumulate in the tumor. Simultaneous treatment of breast carcinoma-bearing mice with anti-EpCAM fusion toxin based on LoPE and HER2-specific liposomes loaded with Barnase leads to concurrent elimination of primary tumor and metastases. Monotherapy with anti-HER2- or anti-EpCAM-toxins did not produce a comparable effect on metastases. The proposed approach can be considered as a promising strategy for significant improvement of cancer therapy.

14.
Nanomaterials (Basel) ; 10(10)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050341

RESUMO

The short-wave infrared region (SWIR) is promising for deep-tissue visualization and temperature sensing due to higher penetration depth and reduced scattering of radiation. However, the strong quenching of luminescence in biological media and low thermal sensitivity of nanothermometers in this region are major drawbacks that limit their practical application. Nanoparticles doped with rare-earth ions are widely used as thermal sensors operating in the SWIR region through the luminescence intensity ratio (LIR) approach. In this study, the effect of the shell on the sensitivity of temperature determination using NaGdF4 nanoparticles doped with rare-earth ions (REI) Yb3+, Ho3+, and Er3+ coated with an inert NaYF4 shell was investigated. We found that coating the nanoparticles with a shell significantly increases the intensity of luminescence in the SWIR range, prevents water from quenching luminescence, and decreases the temperature of laser-induced heating. Thermometry in the SWIR spectral region was demonstrated using synthesized nanoparticles in dry powder and in water. The core-shell nanoparticles obtained had intense luminescence and made it possible to determine temperatures in the range of 20-40 °C. The relative thermal sensitivity of core-shell NPs was 0.68% °C-1 in water and 4.2% °C-1 in dry powder.

15.
Antioxidants (Basel) ; 9(9)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942578

RESUMO

To counteract oxidative stress, antioxidants including carotenoids are highly promising, yet their exploitation is drastically limited by the poor bioavailability and fast photodestruction, whereas current delivery systems are far from being efficient. Here we demonstrate that the recently discovered nanometer-sized water-soluble carotenoprotein from Anabaena sp. PCC 7120 (termed AnaCTDH) transiently interacts with liposomes to efficiently extract carotenoids via carotenoid-mediated homodimerization, yielding violet-purple protein samples. We characterize the spectroscopic properties of the obtained pigment-protein complexes and the thermodynamics of liposome-protein carotenoid transfer and demonstrate the delivery of carotenoid echinenone from AnaCTDH into liposomes with an efficiency of up to 70 ± 3%. Most importantly, we show efficient carotenoid delivery to membranes of mammalian cells, which provides protection from reactive oxygen species (ROS). Incubation of neuroblastoma cell line Tet21N in the presence of 1 µM AnaCTDH binding echinenone decreased antimycin A ROS production by 25% (p < 0.05). The described carotenoprotein may be considered as part of modular systems for the targeted antioxidant delivery.

16.
Methods Appl Fluoresc ; 8(2): 025006, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32069443

RESUMO

Upconversion nanoparticles have attracted considerable attention as luminescent markers for bioimaging and sensing due to their capability to convert near-infrared (NIR) excitation into visible or NIR luminescence. However, the wavelength of about 970 nm is commonly used for the upconversion luminescence excitation, where the strong absorption of water is observed, which can lead to laser-induced overheating effects. One of the strategies for avoiding such laser-induced heating involves shifting the excitation into shorter wavelengths region. However, the influence of wavelength change on luminescent images quality has not been investigated yet. In this work, we compare wavelengths of 920, 940 and 970 nm for upconversion luminescence excitation in the thickness of biological tissues in terms of detected signal intensity and obtained image quality (contrast and signal-to-background ratio). Studies on biological tissue phantoms with various scattering and absorbing properties were performed to analyze the influence of optical parameters on the depth and contrast of the images obtained under 920-970 nm excitation. It was shown that at the same power the excitation wavelength shift reduces the detected signal intensity and the resulting image contrast. Visualization of biological tissue samples using shorter excitation wavelengths 920 and 940 nm also reduces signal-to-background ratio (S/B) of the obtained images. The S/B of the obtained images amounted to 2, 6 and 8 for 920, 940 and 970 nm, respectively. It was demonstrated that pulse-periodic excitation mode is preferable for obtaining high quality luminescent images of biological tissues deep layers and minimize overheating. Short pulse durations (duty cycle 20%) don't result in heating even for 1 W cm-2 pumping power density and allow obtaining high luminescence intensity, which provides good images quality.


Assuntos
Luminescência , Nanopartículas/química , Humanos
17.
J Clin Med ; 8(12)2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861124

RESUMO

This article presents the results of intraoperative fluorescent diagnostics via the endoscopic system for assessing the quality of photodynamic therapy (PDT) of head and neck cancer. The diagnosis and PDT procedures were performed on the five patients with malignant neoplasms of the vocal cords, lateral surface of the tongue, and trachea and cancer of the left parotid salivary gland. Molecular form of chlorin E6 (Ce6) was intravenously administered with a 1.0-1.1 mg/kg concentration for PDT. Fluorescent diagnostics (FD) was conducted before PDT and after PDT procedures. Control of PDT efficiency was carried out by evaluating the photobleaching of the drug (photosensitizer). The method of intraoperative fluorescent imaging allows determining the exact location of the tumor and its boundaries. The assessment of photosensitizer photobleaching in real time regime allows making quick decisions during PDT procedure, which helps improving the quality of patients' treatment. The results showed the convenience of endoscopic fluorescent video system in various nosologies of head and neck cancer. Therefore, this diagnostic approach will improve the effectiveness of cancer treatment.

18.
Am J Dent ; 32(2): 61-68, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31094139

RESUMO

PURPOSE: To evaluate the marginal adaptation of mixed Class V composite restorations in cavities prepared with the Quantum Square Pulse (QSP) mode Er:YAG laser, compared to Super Short Pulse (SSP) and diamond bur. The impact of Er:YAG laser finishing with low pulse energy and two irradiation distances was also evaluated. METHODS: Class V cavities were prepared in enamel and dentin by varying the above parameters, and then restored with Clearfil SE Bond and Clearfil AP-X composite under dentin fluid simulation. The control groups were prepared and finished using conventional diamond burs (80 and 25 µm respectively). Scanning electron microscope (SEM) marginal adaptation analysis at x200 magnification was performed on replicas before and after thermo-mechanical cyclic loading in order to determine the percentage of continuous margins (i.e. from 0 to 100% of gap free margins). The differences between groups were analyzed with one-way ANOVA and Duncan post hoc test. RESULTS: Dentin treated with SSP showed significantly lower percentages of "continuous margin" than the QSP and control groups. QSP was as effective as bur preparation. CLINICAL SIGNIFICANCE: The preparation and finishing protocol may no longer be necessary when using the QSP mode, reducing clinical time without compromising marginal adaptation.


Assuntos
Colagem Dentária , Preparo da Cavidade Dentária , Lasers de Estado Sólido , Resinas Compostas , Restauração Dentária Permanente , Dentina , Adesivos Dentinários , Microscopia Eletrônica de Varredura
19.
J Photochem Photobiol B ; 185: 215-222, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29966988

RESUMO

The monocyte/macrophage cell lineage reveals an enormous plasticity, which is required for tissue homeostasis, but is also undermined in various disease states, leading to a functional involvement of macrophages in major human diseases such as atherosclerosis and cancer. We recently generated in vivo evidence that crystalline, nonfluorescent nanoparticles of the hydrophobic porphyrin-related photosensitizer Aluminum phthalocyanine are selectively dissolved and thus may be used for specific fluorescent labelling of rejected, but not of accepted xenotransplants. This led us to hypothesize that nanoparticles made of planar photosensitizers such as porphyrins and chlorins were preferentially taken up and dissolved by macrophages, which was verified by in vitro studies. Here, using an in vitro system for macrophage differentiation/polarization of the human monocyte THP-1 cell line, we demonstrate differential uptake/dissolution of Temoporfin-derived nanoparticles in polarized macrophages, which resulted in differential photosensitivity. More importantly, low dose photodynamic sensitization using Temoporfin nanoparticles can be used to trigger M1 re-polarization of THP-1 cells previously polarized to the M2 state. Thus, sublethal photodynamic treatment using Temoporfin nanoparticles might be applied to induce a phenotypic shift of tumor-associated macrophages for the correction of an immunosuppressive microenvironment in the treatment of cancer, which may synergize with immune checkpoint inhibition.


Assuntos
Polaridade Celular/efeitos dos fármacos , Luz , Mesoporfirinas/química , Nanopartículas/toxicidade , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos da radiação , Linhagem Celular , Polaridade Celular/efeitos da radiação , Humanos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Nanopartículas/química , Fenótipo , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia
20.
Pharmgenomics Pers Med ; 11: 43-49, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29606886

RESUMO

INTRODUCTION: Difficulties in non-vitamin K anticoagulant (NOAC) administration in acute stroke can be associated with changes in pharmacokinetic parameters of NOAC such as biotransformation, distribution, and excretion. Therefore, obtaining data on pharmacokinetics of NOAC and factors that affect it may help develop algorithms for personalized use of this drug class in patients with acute cardioembolic stroke. PATIENTS AND METHODS: Pharmacokinetics of apixaban in patients with acute stroke was studied earlier by Kryukov et al. The present study enrolled 17 patients with cardioembolic stroke, who received 5 mg of apixaban. In order to evaluate the pharmacokinetic parameters of apixaban, venous blood samples were collected before taking 5 mg of apixaban (point 0) and 1, 2, 3, 4, 10, and 12 hours after drug intake. Blood samples were centrifuged at 3000 rpm for 15 minutes. Separate plasma was aliquoted in Eppendorf tubes and frozen at -70°C until analysis. High-performance liquid chromatography mass spectrometry analysis was used to determine apixaban plasma concentration. Genotyping was performed by real-time polymerase chain reaction. CYP3A isoenzyme group activity was evaluated by determining urinary concentration of endogenous substrate of the enzyme and its metabolite (6-ß-hydroxycortisol to cortisol ratio). Statistical analysis was performed using SPSS Statistics version 20.0. The protocol of this study was reviewed and approved by the ethics committee; patients or their representatives signed an informed consent. RESULTS: ABCB1 (rs1045642 and rs4148738) gene polymorphisms do not affect the pharmacokinetics of apixaban as well as CYP3A5 (rs776746) gene polymorphisms. Apixaban pharmacokinetics in groups with different genotypes did not differ statistically significantly. Correlation analysis showed no statistically significant relationship between pharmacokinetic parameters of apixaban and the metabolic activity of CYP3A. CONCLUSION: Questions such as depending on genotyping results for apixaban dosing and implementation of express genotyping in clinical practice remain open for NOACs. Large population studies are required to clarify the clinical significance of genotyping for this drug class.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...