Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Occup Environ Hyg ; 20(11): 506-519, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37382490

RESUMO

Effective sampling for severe acute respiratory syndrome 2 (SARS-CoV-2) is a common approach for monitoring disinfection efficacy and effective environmental surveillance. This study evaluated sampling efficiency and limits of detection (LODs) of macrofoam swab and sponge stick sampling methods for recovering infectious SARS-CoV-2 and viral RNA (vRNA) from surfaces. Macrofoam swab and sponge stick methods were evaluated for collection of SARS-CoV-2 suspended in a soil load from 6-in2 coupons composed of four materials: stainless steel (SS), acrylonitrile butadiene styrene (ABS) plastic, bus seat fabric, and Formica. Recovery of infectious SARS-CoV-2 was more efficient than vRNA recovery on all materials except Formica (macrofoam swab sampling) and ABS (sponge stick sampling). Macrofoam swab sampling recovered significantly more vRNA from Formica than ABS and SS, and sponge stick sampling recovered significantly more vRNA from ABS than Formica and SS, suggesting that material and sampling method choice can affect surveillance results. Time since initial contamination significantly affected infectious virus recovery from all materials, with vRNA recovery showing limited to no difference, suggesting that SARS-CoV-2 vRNA can remain detectable after viral infectivity has dissipated. This study showed that a complex relationship exists between sampling method, material, time from contamination to sampling, and recovery of SARS-CoV-2. In conclusion, data show that careful consideration be used when selecting surface types for sampling and interpreting SARS-CoV-2 vRNA recovery with respect to presence of infectious virus.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Tato , Aço Inoxidável
2.
J Appl Microbiol ; 132(4): 3375-3386, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34981882

RESUMO

AIMS: This study evaluated the residual efficacy of commercially available antimicrobial coatings or films against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on non-porous surfaces. METHODS AND RESULTS: Products were applied to stainless steel or ABS plastic coupons and dried overnight. Coupons were inoculated with SARS-CoV-2 in the presence of 5% soil load. Recovered infectious SARS-CoV-2 was quantified by TCID50 assay. Tested product efficacies ranged from <1.0 to >3.0 log10 reduction at a 2-h contact time. The log10 reduction in recovered infectious SARS-CoV-2 ranged from 0.44 to 3 log10 reduction on stainless steel and 0.25 to >1.67 log10 on ABS plastic. The most effective products tested contained varying concentrations (0.5%-1.3%) of the same active ingredient: 3-(trihydroxysilyl) propyldimethyloctadecyl ammonium chloride. Products formulated with other quaternary ammonium compounds were less effective against SARS-CoV-2 in this test. CONCLUSIONS: The residual antimicrobial products tested showed varied effectiveness against SARS-CoV-2 as a function of product tested. Several products were identified as efficacious against SARS-CoV-2 on both stainless steel and ABS plastic surfaces under the conditions evaluated. Differences in observed efficacy may be due to variation in active ingredient formulation; efficacy is, therefore, difficult to predict based upon listed active ingredient and its concentration. SIGNIFICANCE AND IMPACT: This study highlights the formulation-specific efficacy of several products against SARS-CoV-2 and may inform future development of residual antiviral products for use on non-porous surfaces. The identification of antimicrobial coatings or films showing promise to inactivate SARS-CoV-2 suggests that these products may be worth future testing and consideration.


Assuntos
Anti-Infecciosos , Tratamento Farmacológico da COVID-19 , Antibacterianos , Anti-Infecciosos/farmacologia , Antivirais/farmacologia , Humanos , SARS-CoV-2
3.
J Appl Microbiol ; 132(3): 1813-1824, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34695284

RESUMO

AIMS: Antimicrobial coatings, for use in combination with routine cleaning and disinfection, were evaluated for their effectiveness in reducing virus concentration on stainless steel surfaces. METHODS: Twenty antimicrobial coating products, predominantly composed of organosilane quaternary ammonium compounds, were applied to stainless steel coupons, dried overnight and evaluated for efficacy against Φ6, an enveloped bacteriophage. Additionally, two peel and stick polymer-based films, a copper-based film and three copper alloys were evaluated. Efficacy was determined by comparison of recoveries from uncoated (positive control) and coated (test) surfaces. RESULTS: The results indicated that some of the coating products initially demonstrated >3-log reduction of Φ6; no direct correlation of efficacy was observed with an active ingredient or its concentration. The peel and stick films and copper alloys each demonstrated efficacy in initial testing. However, none of the spray-based products retained efficacy after subjecting the coating to abrasion with either a hypochlorite or quaternary ammonium-based solution applied in accordance with EPA Interim Guidance for Evaluating the Efficacy of Antimicrobial Surface Coatings. Of the products tested for this durability, only one peel and stick polymeric film retained efficacy; the copper alloys were not tested for their durability in this study. CONCLUSIONS: These results suggest that while some organosilane quaternary ammonium compound-based products demonstrate antiviral efficacy, more research and development is needed to understand effective formulations with sufficient durability to perform as supplements to routine cleaning and disinfection.


Assuntos
Anti-Infecciosos , Bacteriófagos , Antibacterianos , Anti-Infecciosos/farmacologia , Desinfecção , Aço Inoxidável
4.
J Occup Environ Hyg ; 19(2): 91-101, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34878351

RESUMO

This study evaluated the efficacy of detergent-based surface cleaning methods against Murine Hepatitis Virus A59 (MHV) as a surrogate coronavirus for SARS-CoV-2. MHV (5% soil load in culture medium or simulated saliva) was inoculated onto four different high-touch materials [stainless steel (SS), Acrylonitrile Butadiene Styrene plastic (ABS), Formica, seat fabric (SF)]. Immediately and 2-hr post-inoculation, coupons were cleaned (damp wipe wiping) with and without pretreatment with detergent solution or 375 ppm hard water. Results identified that physical removal (no pretreatment) removed >2.3 log10 MHV on ABS, SS, and Formica when surfaces were cleaned immediately. Pretreatment with detergent or hard water increased effectiveness over wet wiping 2-hr post-inoculation; pretreatment with detergent significantly increased (p ≤ 0.05) removal of MHV in simulated saliva, but not in culture media, over hard water pretreatment (Formica and ABS). Detergent and hard water cleaning methods were ineffective on SF under all conditions. Overall, efficacy of cleaning methods against coronaviruses are material- and matrix-dependent; pre-wetting surfaces with detergent solutions increased efficacy against coronavirus suspended in simulated saliva. This study provides data highlighting the importance of incorporating a pre-wetting step prior to detergent cleaning and can inform cleaning strategies to reducing coronavirus surface transmission.


Assuntos
COVID-19 , Vírus da Hepatite Murina , Animais , Detergentes , Humanos , Camundongos , Porosidade , SARS-CoV-2
5.
J Appl Microbiol ; 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36626793

RESUMO

AIMS: This study aimed to provide operationally relevant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surface disinfection efficacy information. METHODS AND RESULTS: Three EPA-registered disinfectants (Vital Oxide, Peroxide, and Clorox Total 360) and one antimicrobial formulation (CDC bleach) were evaluated against SARS-CoV-2 on material coupons and were tested using Spray (no touch with contact time) and Spray & Wipe (wipe immediately post-application) methods immediately and 2 h post-contamination. Efficacy was evaluated for infectious virus, with a subset tested for viral RNA (vRNA) recovery. Efficacy varied by method, disinfectant, and material. CDC bleach solution showed low efficacy against SARS-CoV-2 (log reduction < 1.7), unless applied via Spray & Wipe. Additionally, mechanical wiping increased the efficacy of treatments against SARS-CoV-2. The recovery of vRNA post-disinfection suggested that vRNA may overestimate infectious virus remaining. CONCLUSIONS: Efficacy depends on surface material, chemical, and disinfection procedure, and suggests that mechanical wiping alone has some efficacy at removing SARS-CoV-2 from surfaces. We observed that disinfectant treatment biased the recovery of vRNA over infectious virus. SIGNIFICANCE AND IMPACT OF STUDY: These data are useful for developing effective, real-world disinfection procedures, and inform public health experts on the utility of PCR-based surveillance approaches.

6.
World J Microbiol Biotechnol ; 30(10): 2609-23, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24928258

RESUMO

Decontamination studies investigating the effectiveness of products and processes for the inactivation of Bacillus species spores have traditionally utilized metering viable spores in a liquid suspension onto test materials (coupons). The current study addresses the representativeness of studies using this type of inoculation method compared to when coupons are dosed with a metered amount of aerosolized spores. The understanding of this comparability is important in order to assess the representativeness of such laboratory-based testing when deciding upon decontamination options for use against Bacillus anthracis spores. Temporal inactivation of B. anthracis surrogate (B. subtilis) spores on representative materials using fumigation with chlorine dioxide, spraying of a pH-adjusted bleach solution, or immersion in the solution was investigated as a function of inoculation method (liquid suspension or aerosol dosing). Results indicated that effectiveness, measured as log reduction, was statistically significantly lower when liquid inoculation was used for some material and decontaminant combinations. Differences were mostly noted for the materials observed to be more difficult to decontaminate (i.e., wood and carpet). Significant differences in measured effectiveness were also noted to be a function of the pH-adjusted bleach application method used in the testing (spray or immersion). Based upon this work and the cited literature, it is clear that inoculation method, decontaminant application method, and handling of non-detects (i.e., or detection limits) can have an impact on the sporicidal efficacy measurements.


Assuntos
Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/fisiologia , Descontaminação/métodos , Contaminação de Equipamentos , Aerossóis , Clareadores/farmacologia , Compostos Clorados/farmacologia , Desinfetantes/farmacologia , Fumigação , Concentração de Íons de Hidrogênio , Óxidos/farmacologia , Esporos Bacterianos/efeitos dos fármacos
7.
World J Microbiol Biotechnol ; 30(5): 1453-61, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24338558

RESUMO

Characterization of candidate surrogate spores prior to experimental use is critical to confirm that the surrogate characteristics are as closely similar as possible to those of the pathogenic agent of interest. This review compares the physical properties inherent to spores of Bacillus anthracis (Ba) and Bacillus thuringiensis (Bt) that impact their movement in air and interaction with surfaces, including size, shape, density, surface morphology, structure and hydrophobicity. Also evaluated is the impact of irradiation on the physical properties of both Bacillus species. Many physical features of Bt and Ba have been found to be similar and, while Bt is considered typically non-pathogenic, it is in the B. cereus group, as is Ba. When cultured and sporulated under similar conditions, both microorganisms share a similar cylindrical pellet shape, an aerodynamic diameter of approximately 1 µm (in the respirable size range), have an exosporium with a hairy nap, and have higher relative hydrophobicities than other Bacillus species. While spore size, morphology, and other physical properties can vary among strains of the same species, the variations can be due to growth/sporulation conditions and may, therefore, be controlled. Growth and sporulation conditions are likely among the most important factors that influence the representativeness of one species, or preparation, to another. All Bt spores may, therefore, not be representative of all Ba spores. Irradiated spores do not appear to be a good surrogate to predict the behavior of non-irradiated spores due to structural damage caused by the irradiation. While the use of Bt as a surrogate for Ba in aerosol testing appears to be well supported, this review does not attempt to narrow selection between Bt strains. Comparative studies should be performed to test the hypothesis that viable Ba and Bt spores will behave similarly when suspended in the air (as an aerosol) and to compare the known microscale characteristics versus the macroscale response.


Assuntos
Aerossóis , Bacillus anthracis/fisiologia , Bacillus thuringiensis/fisiologia , Bacillus anthracis/efeitos da radiação , Bacillus thuringiensis/efeitos da radiação , Humanos , Esporos Bacterianos/fisiologia , Esporos Bacterianos/efeitos da radiação
8.
J Microbiol Methods ; 92(3): 375-80, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23384827

RESUMO

A simple method for repeatably inoculating surfaces with a precise quantity of aerosolized spores was developed. Laboratory studies were conducted to evaluate the variability of the method within and between experiments, the spatial distribution of spore deposition, the applicability of the method to complex surface types, and the relationship between material surface roughness and spore recoveries. Surface concentrations, as estimated by recoveries from wetted-wipe sampling, were between 5×10(3) and 1.5×10(4)CFUcm(-2) across the entire area (930cm(2)) inoculated. Between-test variability (Cv) in spore recoveries was 40%, 81%, 66%, and 20% for stainless steel, concrete, wood, and drywall, respectively. Within-test variability was lower, and did not exceed 33%, 47%, 52%, and 20% for these materials. The data demonstrate that this method is repeatable, is effective at depositing spores across a target surface area, and can be used to dose complex materials such as concrete, wood, and drywall. In addition, the data demonstrate that surface sampling recoveries vary by material type, and this variability can partially be explained by the material surface roughness index. This deposition method was developed for use in biological agent detection, sampling, and decontamination studies, however, is potentially beneficial to any scientific discipline that investigates surfaces containing aerosol-borne particles.


Assuntos
Aerossóis , Bacillus anthracis/isolamento & purificação , Microbiologia Ambiental , Monitoramento Ambiental/métodos , Esporos Bacterianos/isolamento & purificação , Contagem de Colônia Microbiana , Reprodutibilidade dos Testes , Manejo de Espécimes/métodos , Propriedades de Superfície
9.
Appl Environ Microbiol ; 77(5): 1638-45, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21193670

RESUMO

A method was developed to deposit Bacillus subtilis spores via aerosolization onto various surface materials for biological agent decontamination and detection studies. This new method uses an apparatus coupled with a metered dose inhaler to reproducibly deposit spores onto various surfaces. A metered dose inhaler was loaded with Bacillus subtilis spores, a surrogate for Bacillus anthracis. Five different material surfaces (aluminum, galvanized steel, wood, carpet, and painted wallboard paper) were tested using this spore deposition method. This aerosolization method deposited spores at a concentration of more than 10(7) CFU per coupon (18-mm diameter) with less than a 50% coefficient of variation, showing that the aerosolization method developed in this study can deposit reproducible numbers of spores onto various surface coupons. Scanning electron microscopy was used to probe the spore deposition patterns on test coupons. The deposition patterns observed following aerosol impaction were compared to those of liquid inoculation. A physical difference in the spore deposition patterns was observed to result from the two different methods. The spore deposition method developed in this study will help prepare spore coupons via aerosolization fast and reproducibly for bench top decontamination and detection studies.


Assuntos
Aerossóis , Bacillus subtilis/isolamento & purificação , Técnicas Bacteriológicas/métodos , Microbiologia Ambiental , Contaminação de Equipamentos , Esporos Bacterianos/isolamento & purificação , Reprodutibilidade dos Testes
10.
J Air Waste Manag Assoc ; 60(8): 898-906, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20842929

RESUMO

Research and field experience with chlorine dioxide (ClO2) gas to decontaminate structures contaminated with Bacillus anthracis spores and other microorganisms have demonstrated the effectiveness of this sterilant technology. However, because of its hazardous properties, the unreacted ClO2, gas must be contained and captured during fumigation events. Although activated carbon has been used during some decontamination events to capture the ClO2 gas, no data are available to quantify the performance of the activated carbon in terms of adsorption capacity and other sorbent property operational features. Laboratory experiments were conducted to determine and compare the ClO2 adsorption capacities of five different types of activated carbon as a function of the challenge ClO2 concentration. Tests were also conducted to investigate other sorbent properties, including screening tests to determine gaseous species desorbed from the saturated sorbent upon warming (to provide an indication of how immobile the ClO2 gas and related compounds are once captured on the sorbent). In the adsorption tests, ClO2 gas was measured continuously using a photometric-based instrument, and these measurements were verified with a noncontinuous method utilizing wet chemistry analysis. The results show that the simple activated carbons (not impregnated or containing other activated sorbent materials) were the most effective, with maximum adsorption capacities of approximately 110 mg/g. In the desorption tests, there was minimal release of ClO(2) from all sorbents tested, but desorption levels of chlorine (Cl2) gas (detected as chloride) varied, with a maximum release of nearly 15% of the mass of ClO2 adsorbed.


Assuntos
Carbono/química , Compostos Clorados/química , Desinfetantes de Equipamento Odontológico/química , Óxidos/química , Adsorção , Temperatura
11.
Appl Environ Microbiol ; 76(10): 3343-51, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20305025

RESUMO

Efficacy of chlorine dioxide (CD) gas generated by two distinct generation systems, Sabre (wet system with gas generated in water) and ClorDiSys (dry system with gas generated in air), was evaluated for inactivation of Bacillus anthracis spores on six building interior surfaces. The six building materials included carpet, acoustic ceiling tile, unpainted cinder block, painted I-beam steel, painted wallboard, and unpainted pinewood. There was no statistically significant difference in the data due to the CD generation technology at a 95% confidence level. Note that a common method of CD gas measurement was used for both wet and dry CD generation types. Doses generated by combinations of different concentrations of CD gas (500, 1,000, 1,500, or 3,000 parts per million of volume [ppmv]) and exposure times (ranging between 0.5 and 12 h) were used to evaluate the relative role of fumigant exposure period and total dose in the decontamination of building surfaces. The results showed that the time required to achieve at least a 6-log reduction in viable spores is clearly a function of the material type on which the spores are inoculated. The wood and cinder block coupons required a longer exposure time to achieve a 6-log reduction. The only material showing a clear statistical difference in rate of decay of viable spores as a function of concentration was cinder block. For all other materials, the profile of spore kill (i.e., change in number of viable spores with exposure time) was not dependent upon fumigant concentration (500 to 3,000 ppmv). The CD dose required for complete spore kill on biological indicators (typically, 1E6 spores of Bacillus atrophaeus on stainless steel) was significantly less than that required for decontamination of most of the building materials tested.


Assuntos
Bacillus anthracis/efeitos dos fármacos , Compostos Clorados/farmacologia , Descontaminação/métodos , Desinfetantes/farmacologia , Óxidos/farmacologia , Esporos Bacterianos/efeitos dos fármacos , Pisos e Cobertura de Pisos , Aço , Fatores de Tempo , Madeira/microbiologia
12.
Appl Environ Microbiol ; 75(11): 3688-94, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19346341

RESUMO

Chlorine dioxide gas and vaporous hydrogen peroxide sterilant have been used in the cleanup of building interiors contaminated with spores of Bacillus anthracis. A systematic study, in collaboration with the U.S. Environmental Protection Agency, was jointly undertaken by the U.S. Army-Edgewood Chemical Biological Center to determine the sporicidal efficacies of these two fumigants on six building structural materials: carpet, ceiling tile, unpainted cinder block, painted I-beam steel, painted wallboard, and unpainted pinewood. Critical issues related to high-throughput sample processing and spore recovery from porous and nonporous surfaces included (i) the extraction of spores from complex building materials, (ii) the effects of titer challenge levels on fumigant efficacy, and (iii) the impact of bioburden inclusion on spore recovery from surfaces and spore inactivation. Small pieces (1.3 by 1.3 cm of carpet, ceiling tile, wallboard, I-beam steel, and pinewood and 2.5 by 1.3 cm for cinder block) of the materials were inoculated with an aliquot of 50 microl containing the target number (1 x 10(6), 1 x 10(7), or 1 x 10(8)) of avirulent spores of B. anthracis NNR1Delta1. The aliquot was dried overnight in a biosafety cabinet, and the spores were extracted by a combination of a 10-min sonication and a 2-min vortexing using 0.5% buffered peptone water as the recovery medium. No statistically significant drop in the kill efficacies of the fumigants was observed when the spore challenge level was increased from 6 log units to 8 log units, even though a general trend toward inhibition of fumigant efficacy was evident. The organic burden (0 to 5%) in the spore inoculum resulted in a statistically significant drop in spore recovery (at the 2 or 5% level). The effect on spore killing was a function of the organic bioburden amount and the material type. In summary, a high-throughput quantitative method was developed for determining the efficacies of fumigants, and the spore recoveries from five porous materials and one nonporous material ranged between 20 and 80%.


Assuntos
Antibacterianos/farmacologia , Bacillus anthracis/efeitos dos fármacos , Descontaminação/métodos , Fumigação , Viabilidade Microbiana/efeitos dos fármacos , Esporos Bacterianos/efeitos dos fármacos , Compostos Clorados/farmacologia , Contagem de Colônia Microbiana , Peróxido de Hidrogênio/farmacologia , Óxidos/farmacologia , Estados Unidos
13.
J Environ Sci (China) ; 19(1): 117-22, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17913164

RESUMO

The effect of sulfur dioxide (SO2) on the formation of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) has been studied in an entrained-flow reactor (EFR) under simulated waste combustion conditions. A chlorination model based on conditional probability was employed to evaluate the homologue patterns of PCDDs and PCDFs. Results revealed that the presence of SO2 did not alter the formation pathway although SO2 suppressed PCDD/F formation. The prediction model of PCDF showed good agreement with the experimental data (R = 0.95), whereas the prediction for PCDDs did not correlate well with the experimental data. This may be explained because potential chlorination pathways play a significant role in PCDF formation, whereas PCDDs are mainly formed through condensation reactions. Furthermore, the result indicated that the steric hindrance during formation has more effects on PCDD than on PCDF due to the symmetric molecular structures of PCDDs.


Assuntos
Benzofuranos/síntese química , Carbono/química , Modelos Teóricos , Material Particulado/química , Dibenzodioxinas Policloradas/análogos & derivados , Dióxido de Enxofre/química , Cinza de Carvão , Dibenzofuranos Policlorados , Dibenzodioxinas Policloradas/síntese química
14.
Environ Sci Technol ; 40(22): 7040-7, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17154014

RESUMO

Cofiring coal in municipal solid waste incinerators (MSWls) has previously been reported to reduce polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/Fs) emissions due to increasing the flue gas SO2 concentration. The present study was focused on understanding the primary mechanism responsible for the suppressant effect of SO2 on total PCDD/F formation and toxic equivalent (TEQ) emissions. The addition of SO2, simulating the effect of coal addition on the flue gas composition, resulted in significant reductions in the TEQ emissions due to reactions involving SO2 in the postcombustion zone. However, emissions of total PCDDs/Fs, unlike the TEQ value, were dependent upon the Cl2 and SO2 injection temperatures due to increases in non-TEQ correlated isomers. The conversion of metal chlorides in the fly ash to sulfates, thus reducing the sites responsible for chlorination/oxidation reactions, was concluded to be the main suppressant mechanism; proposed reactions for copper and iron are presented. This mechanism was found to be independent of combustion conditions and could have prolonged effects on PCDD/F emissions from deposits formed with high flue gas S/Cl ratios.


Assuntos
Poluição do Ar/análise , Benzofuranos/análise , Dibenzodioxinas Policloradas/análogos & derivados , Dióxido de Enxofre/química , Benzofuranos/química , Carvão Mineral , Dibenzofuranos Policlorados , Gases , Incineração , Dibenzodioxinas Policloradas/análise , Dibenzodioxinas Policloradas/química , Eliminação de Resíduos/métodos
15.
Environ Sci Technol ; 38(6): 1708-17, 2004 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15074679

RESUMO

The formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) was investigated for mixtures of carbon black and iron chloride supported on a ceramic glass powder matrix in a low (2%) oxygen environment. Three iron chloride types (iron(II) chloride tetrahydrate, iron(III) chloride hexahydrate, and iron(II) oxychloride) were studied to gain some insights into their role in de novo formation. The importance of iron(II) and iron(III) chlorides both as chlorinating agents and promoters of low-temperature carbon gasification was observed. Iron(III) oxychloride was shown to be a very effective promoter at 325 degrees C and above; its conversion to iron(III) chloride was suggested as a key step. The predominant product was octachlorodibenzofuran. The oxide support matrix was found to be an important parameter.


Assuntos
Benzofuranos/química , Clorobenzenos/química , Dioxinas/química , Compostos de Ferro/química , Cloretos/química , Poluentes Ambientais , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...