Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 495(7441): 333-8, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23446348

RESUMO

Circular RNAs (circRNAs) in animals are an enigmatic class of RNA with unknown function. To explore circRNAs systematically, we sequenced and computationally analysed human, mouse and nematode RNA. We detected thousands of well-expressed, stable circRNAs, often showing tissue/developmental-stage-specific expression. Sequence analysis indicated important regulatory functions for circRNAs. We found that a human circRNA, antisense to the cerebellar degeneration-related protein 1 transcript (CDR1as), is densely bound by microRNA (miRNA) effector complexes and harbours 63 conserved binding sites for the ancient miRNA miR-7. Further analyses indicated that CDR1as functions to bind miR-7 in neuronal tissues. Human CDR1as expression in zebrafish impaired midbrain development, similar to knocking down miR-7, suggesting that CDR1as is a miRNA antagonist with a miRNA-binding capacity ten times higher than any other known transcript. Together, our data provide evidence that circRNAs form a large class of post-transcriptional regulators. Numerous circRNAs form by head-to-tail splicing of exons, suggesting previously unrecognized regulatory potential of coding sequences.


Assuntos
Regulação da Expressão Gênica , RNA/metabolismo , Animais , Autoantígenos/genética , Autoantígenos/metabolismo , Sítios de Ligação , Encéfalo/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Linhagem Celular , Sequência Conservada , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , RNA/genética , RNA Circular , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
2.
J Immunol ; 189(3): 1448-58, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22745379

RESUMO

Innate immune receptors represent an evolutionarily ancient system that allows organisms to detect and rapidly respond to pathogen- and host-derived factors. TLRs are predominantly expressed in immune cells and mediate such a response. Although this class of pattern recognition receptors is involved in CNS disorders, the knowledge of ligands leading to activation of TLRs and to subsequent CNS damage is limited. We report in this study that ssRNA causes neurodegeneration and neuroinflammation dependent on TLR7 in the CNS. TLR7 is not only expressed in microglia, the major immune cells of the brain, but also in neurons of the CNS. Extracellularly delivered ssRNA40, an oligoribonucleotide derived from HIV and an established ligand of TLR7, induces neuronal cell death dependent on TLR7 and the central adapter molecule MyD88 in vitro. Activation of caspase-3 is involved in neuronal damage mediated by TLR7. This cell-autonomous neuronal cell death induced by ssRNA40 is amplified in the presence of microglia that mount an inflammatory response to ssRNA40 through TLR7. Intrathecal administration of ssRNA40 causes widespread neurodegeneration in wild-type but not in TLR7(-/-) mice, confirming that neuronal cell death induced by ssRNA40 through TLR7 occurs in vivo. Our results point to a possible mechanism through which extracellularly delivered ssRNA contributes to CNS damage and determine an obligatory role for TLR7 in this pathway.


Assuntos
Líquido Extracelular/imunologia , Líquido Extracelular/virologia , Glicoproteínas de Membrana/fisiologia , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/virologia , RNA Viral/administração & dosagem , Receptor 7 Toll-Like/fisiologia , Animais , Caspase 3/efeitos adversos , Caspase 3/fisiologia , Morte Celular/genética , Morte Celular/imunologia , Linhagem Celular Tumoral , Células HEK293 , HIV/genética , HIV/imunologia , Humanos , Injeções Espinhais , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/efeitos adversos , Fator 88 de Diferenciação Mieloide/fisiologia , Doenças Neurodegenerativas/patologia , Cultura Primária de Células , RNA Viral/efeitos adversos , RNA Viral/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 7 Toll-Like/deficiência , Receptor 7 Toll-Like/genética
3.
EMBO J ; 31(12): 2755-69, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22543868

RESUMO

Freshwater planaria possess extreme regeneration capabilities mediated by abundant, pluripotent stem cells (neoblasts) in adult animals. Although planaria emerged as an attractive in vivo model system for stem cell biology, gene expression in neoblasts has not been profiled comprehensively and it is unknown how molecular mechanisms for pluripotency in neoblasts relate to those in mammalian embryonic stem cells (ESCs). We purified neoblasts and quantified mRNA and protein expression by sequencing and shotgun proteomics. We identified ∼4000 genes specifically expressed in neoblasts, including all ∼30 known neoblast markers. Genes important for pluripotency in ESCs, including regulators as well as targets of OCT4, were well conserved and upregulated in neoblasts. We found conserved expression of epigenetic regulators and demonstrated their requirement for planarian regeneration by knockdown experiments. Post-transcriptional regulatory genes characteristic for germ cells were also enriched in neoblasts, suggesting the existence of a common ancestral state of germ cells and ESCs. We conclude that molecular determinants of pluripotency are conserved throughout evolution and that planaria are an informative model system for human stem cell biology.


Assuntos
Diferenciação Celular , Proliferação de Células , Regulação da Expressão Gênica , Planárias/citologia , Células-Tronco Pluripotentes/fisiologia , Animais , Perfilação da Expressão Gênica , Proteoma/análise
4.
Nat Neurosci ; 15(6): 827-35, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22610069

RESUMO

Activation of innate immune receptors by host-derived factors exacerbates CNS damage, but the identity of these factors remains elusive. We uncovered an unconventional role for the microRNA let-7, a highly abundant regulator of gene expression in the CNS, in which extracellular let-7 activates the RNA-sensing Toll-like receptor (TLR) 7 and induces neurodegeneration through neuronal TLR7. Cerebrospinal fluid (CSF) from individuals with Alzheimer's disease contains increased amounts of let-7b, and extracellular introduction of let-7b into the CSF of wild-type mice by intrathecal injection resulted in neurodegeneration. Mice lacking TLR7 were resistant to this neurodegenerative effect, but this susceptibility to let-7 was restored in neurons transfected with TLR7 by intrauterine electroporation of Tlr7(−/−) fetuses. Our results suggest that microRNAs can function as signaling molecules and identify TLR7 as an essential element in a pathway that contributes to the spread of CNS damage.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Glicoproteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Degeneração Neural/metabolismo , Neurônios/metabolismo , Receptor 7 Toll-Like/metabolismo , Doença de Alzheimer/genética , Animais , Apoptose/fisiologia , Encéfalo/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Células HEK293 , Humanos , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia
5.
Adv Exp Med Biol ; 700: 85-105, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21755476

RESUMO

Trim-NHL proteins are defined by RING, B-Box and Coiled-coil protein motifs (referred to collectively as the Trim domain) coupled to an NHL domain. The C. elegans, D. melanogaster, mouse and human Trim-NHL proteins are potential and in several cases confirmed, E3 ubiquitin ligases. Current research is focused on identifying targets and pathways for Trim-NHL-mediated ubiquitination and in assessing the contribution of the NHL protein-protein interaction domain for function and specificity. Several Trim-NHL proteins were discovered in screens for developmental genes in model organisms; mutations in one of the family members, Trim32, cause developmental disturbances in humans. In most instances, mutations that alter protein function map to the NHL domain. The NHL domain is a scaffold for the assembly of a translational repressor complex by the Brat proto-oncogene, a well-studied family member in Drosophila. The link to translational control is common to at least four Trim-NHLs that associate with miRNA pathway proteins. So far, two have been shown to repress (Mei-P26 and Lin41) and two to promote (NHL-2, Trim32) miRNA-mediated gene silencing. In this chapter we will describe structure-function relations for each of the proteins and then focus on the lessons being learned from these proteins about miRNA functions in development and in stem cell biology.


Assuntos
Drosophila melanogaster , MicroRNAs , Animais , Caenorhabditis elegans/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Humanos , MicroRNAs/metabolismo , Proto-Oncogene Mas , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
6.
Genome Res ; 21(7): 1193-200, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21536722

RESUMO

Freshwater planaria are a very attractive model system for stem cell biology, tissue homeostasis, and regeneration. The genome of the planarian Schmidtea mediterranea has recently been sequenced and is estimated to contain >20,000 protein-encoding genes. However, the characterization of its transcriptome is far from complete. Furthermore, not a single proteome of the entire phylum has been assayed on a genome-wide level. We devised an efficient sequencing strategy that allowed us to de novo assemble a major fraction of the S. mediterranea transcriptome. We then used independent assays and massive shotgun proteomics to validate the authenticity of transcripts. In total, our de novo assembly yielded 18,619 candidate transcripts with a mean length of 1118 nt after filtering. A total of 17,564 candidate transcripts could be mapped to 15,284 distinct loci on the current genome reference sequence. RACE confirmed complete or almost complete 5' and 3' ends for 22/24 transcripts. The frequencies of frame shifts, fusion, and fission events in the assembled transcripts were computationally estimated to be 4.2%-13%, 0%-3.7%, and 2.6%, respectively. Our shotgun proteomics produced 16,135 distinct peptides that validated 4200 transcripts (FDR ≤1%). The catalog of transcripts assembled in this study, together with the identified peptides, dramatically expands and refines planarian gene annotation, demonstrated by validation of several previously unknown transcripts with stem cell-dependent expression patterns. In addition, our robust transcriptome characterization pipeline could be applied to other organisms without genome assembly. All of our data, including homology annotation, are freely available at SmedGD, the S. mediterranea genome database.


Assuntos
Perfilação da Expressão Gênica/métodos , Planárias/genética , Proteômica , Análise de Sequência de DNA/métodos , Animais , Mapeamento Cromossômico , Simulação por Computador , Genoma , Hibridização In Situ , Anotação de Sequência Molecular , Planárias/metabolismo , Proteoma/genética , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Software , Células-Tronco/metabolismo
7.
Adv Exp Med Biol ; 700: 85-105, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21627033

RESUMO

Trim-NHL proteins are defined by RING, B-Box and Coiled-coil protein motifs (referred to collectively as the Trim domain) coupled to an NHL domain. The C. elegans, D. melanogaster, mouse and human Trim-NHL proteins are potential and in several cases confirmed, E3 ubiquitin ligases. Current research is focused on identifying targets and pathways for Trim-NHL-mediated ubiquitination and in assessing the contribution of the NHL protein-protein interactiondomain for function and specificity. Several Trim-NHL proteins were discovered in screens for developmental genes in model organisms; mutations in one of the family members, Trim32, cause developmental disturbances in humans. In most instances, mutations that alter protein function map to the NHL domain. The NHL domain is a scaffold for the assembly of a translational repressor complex by the Brat proto-oncogene, a well-studied family member in Drosophila. The link to translational control is common to at least four Trim-NHLs that associate with miRNA pathway proteins. So far, two have been shown to repress (Mei-P26 and Lin41) and two to promote (NHL-2, Trim32) miRNA-mediated gene silencing. In this chapter we will describe structure-function relations for each of the proteins and then focus on the lessons being learned from these proteins about miRNA functions in development and in stem cell biology.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas de Membrana/fisiologia , MicroRNAs/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Proteínas de Caenorhabditis elegans/fisiologia , Proteínas de Transporte/fisiologia , Proteínas de Drosophila/fisiologia , Humanos , Proteínas de Membrana/química , Estrutura Terciária de Proteína , Proto-Oncogene Mas , Fatores de Transcrição/fisiologia , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Ubiquitinação
8.
Nat Cell Biol ; 11(12): 1411-20, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19898466

RESUMO

The let-7 miRNA and its target gene Lin-28 interact in a regulatory circuit controlling pluripotency. We investigated an additional let-7 target, mLin41 (mouse homologue of lin-41), as a potential contributor to this circuit. We demonstrate the presence of mLin41 protein in several stem cell niches, including the embryonic ectoderm, epidermis and male germ line. mLin41 colocalized to cytoplasmic foci with P-body markers and the miRNA pathway proteins Ago2, Mov10 and Tnrc6b. In co-precipitation assays, mLin41 interacted with Dicer and the Argonaute proteins Ago1, Ago2 and Ago4. Moreover, we show that mLin41 acts as an E3 ubiquitin ligase in an auto-ubiquitylation assay and that mLin41 mediates ubiquitylation of Ago2 in vitro and in vivo. Overexpression and depletion of mLin41 led to inverse changes in the level of Ago2 protein, implicating mLin41 in the regulation of Ago2 turnover. mLin41 interfered with silencing of target mRNAs for let-7 and miR-124, at least in part by antagonizing Ago2. Furthermore, mLin41 cooperated with the pluripotency factor Lin-28 in suppressing let-7 activity, revealing a dual control mechanism regulating let-7 in stem cells.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , MicroRNAs/genética , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas Argonautas , Carcinoma Embrionário/genética , Células Cultivadas , Fator de Iniciação 2 em Eucariotos/genética , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Espermatozoides/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Ubiquitinadas/metabolismo
9.
Nat Cell Biol ; 10(8): 987-93, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18604195

RESUMO

miRNA populations, including mammalian homologues of lin-4 (mir-125) and let-7, undergo a marked transition during stem-cell differentiation. Originally identified on the basis of their mutational phenotypes in stem-cell maturation, mir-125 and let-7 are strongly induced during neural differentiation of embryonic stem (ES) cells and embryocarcinoma (EC) cells. We report that embryonic neural stem (NS) cells express let-7 and mir-125, and investigate post-transcriptional mechanisms contributing to the induction of let-7. We demonstrate that the pluripotency factor Lin-28 binds the pre-let-7 RNA and inhibits processing by the Dicer ribonuclease in ES and EC cells. In NS cells, Lin-28 is downregulated by mir-125 and let-7, allowing processing of pre-let-7 to proceed. Suppression of let-7 or mir-125 activity in NS cells led to upregulation of Lin-28 and loss of pre-let-7 processing activity, suggesting that let-7, mir-125 and lin-28 participate in an autoregulatory circuit that controls miRNA processing during NS-cell commitment.


Assuntos
Células-Tronco Embrionárias/citologia , Retroalimentação Fisiológica , MicroRNAs/metabolismo , Neurônios/citologia , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/metabolismo , Animais , Diferenciação Celular , Regulação da Expressão Gênica , Camundongos , MicroRNAs/genética , Proteínas de Ligação a RNA/genética
10.
FASEB J ; 21(2): 415-26, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17167072

RESUMO

The let-7 miRNA regulates developmental timing in C. elegans and is an important paradigm for investigations of miRNA functions in mammalian development. We have examined the role of miRNA precursor processing in the temporal control and lineage specificity of the let-7 miRNA. In situ hybridization (ISH) in E9.5 mouse embryos revealed early induction of let-7 in the developing central nervous system. The expression pattern of three let-7 family members closely resembled that of the brain-enriched miRNAs mir-124, mir-125 and mir-128. Comparison of primary, precursor, and mature let-7 RNA levels during both embryonic brain development and neural differentiation of embryonic stem cells and embryocarcinoma (EC) cells suggest post-transcriptional regulation of let-7 accumulation. Reflecting these results, let-7 sensor constructs were strongly down-regulated during neural differentiation of EC cells and displayed lineage specificity in primary cells. Neural differentiation of EC cells was accompanied by an increase in let-7 precursor processing activity in vitro. Furthermore, undifferentiated and differentiated cells contained distinct precursor RNA binding complexes. A neuron-enhanced binding complex was shown by antibody challenge to contain the miRNA pathway proteins Argonaute1 and FMRP. Developmental regulation of the processing pathway correlates with differential localization of the proteins Argonaute, FMRP, MOV10, and TNRC6B in self-renewing stem cells and neurons.


Assuntos
Encéfalo/metabolismo , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , Animais , Northern Blotting , Encéfalo/citologia , Encéfalo/embriologia , Diferenciação Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Imunoprecipitação da Cromatina , Células-Tronco Embrionárias/citologia , Humanos , Hibridização In Situ , Camundongos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...