Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 11(7): e15592, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37038908

RESUMO

Using the 16HBE 14o- human airway epithelial cell culture model, calcitriol (Vitamin D) was shown to improve barrier function by two independent metrics - increased transepithelial electrical resistance (TER) and reduced transepithelial diffusion of 14 C-D-mannitol (Jm ). Both effects were concentration dependent and active out to 168 h post-treatment. Barrier improvement associated with changes in the abundance of specific tight junctional (TJ) proteins in detergent-soluble fractions, most notably decreased claudin-2. TNF-α-induced compromise of barrier function could be attenuated by calcitriol with a concentration dependence similar to that observed for improvement of control barrier function. TNF-α-induced increases in claudin-2 were partially reversed by calcitriol. The ERK 1,2 inhibitor, U0126, itself improved 16HBE barrier function indicating MAPK pathway regulation of 16HBE barrier function. Calcitriol's action was additive to the effect of U0126 in reducing TNF- α -induced barrier compromise, suggesting that calcitriol may be acting through a non-ERK pathway in its blunting of TNF- α - induced barrier compromise. This was supported by calcitriol being without effect on pERK levels elevated by the action of TNF-α. Lack of effect of TNF- α on the death marker, caspase-3, and the inability of calcitriol to decrease the elevated LC3B II level caused by TNF-α, suggest that calcitriol's barrier improvement does not involve a cell death pathway. Calcitriol's improvement of control barrier function was not additive to barrier improvement induced by retinoic acid (Vitamin A). Calcitriol improvement and protection of airway barrier function could in part explain Vitamin D's reported clinical efficacy in COVID-19 and other airway diseases.


Assuntos
COVID-19 , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Calcitriol/farmacologia , Calcitriol/metabolismo , Claudina-2/metabolismo , Junções Íntimas/metabolismo , COVID-19/metabolismo , Células Epiteliais/metabolismo , Pulmão/metabolismo
2.
Exp Lung Res ; 49(1): 72-85, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37000123

RESUMO

Purpose: Airway epithelial barrier leak and the involvement of proinflammatory cytokines play a key role in a variety of diseases. This study evaluates barrier compromise by the inflammatory mediator Tumor Necrosis Factor-α (TNF-α) in the human airway epithelial Calu-3 model. Methods: We examined the effects of TNF-α on barrier function in Calu-3 cell layers using Transepithelial Electrical Resistance (TER) and transepithelial diffusion of radiolabeled probe molecules. Western immunoblot analyses of tight junctional (TJ) proteins in detergent soluble fractions were performed. Results: TNF-α dramatically reduced TER and increased paracellular permeability of both 14C-D-mannitol and the larger 5 kDa probe, 14C-inulin. A time course of the effects shows two separate actions on barrier function. An initial compromise of barrier function occurs 2-4 hours after TNF-α exposure, followed by complete recovery of barrier function by 24 hrs. Beginning 48 hrs. post-exposure, a second more sustained barrier compromise ensues, in which leakiness persists through 144 hrs. There were no changes in TJ proteins observed at 3 hrs. post exposure, but significant increases in claudins-2, -3, -4, and -5, as well as a decrease in occludin were seen at 72 hrs. post TNF-α exposure. Both the 2-4 hr. and the 72 hr. TNF-α induced leaks are shown to be mediated by the ERK signaling pathway. Conclusion: TNF-α induced a multiphasic transepithelial leak in Calu-3 cell layers that was shown to be ERK mediated, as well as involve changes in the TJ complex. The micronutrients, retinoic acid and calcitriol, were effective at reducing this barrier compromise caused by TNF-α. The significance of these results for airway disease and for COVID-19 specifically are discussed.


Assuntos
COVID-19 , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Junções Íntimas/metabolismo , COVID-19/metabolismo , Citocinas/metabolismo , Células Epiteliais/metabolismo
3.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35328419

RESUMO

The published literature makes a very strong case that a wide range of disease morbidity associates with and may in part be due to epithelial barrier leak. An equally large body of published literature substantiates that a diverse group of micronutrients can reduce barrier leak across a wide array of epithelial tissue types, stemming from both cell culture as well as animal and human tissue models. Conversely, micronutrient deficiencies can exacerbate both barrier leak and morbidity. Focusing on zinc, Vitamin A and Vitamin D, this review shows that at concentrations above RDA levels but well below toxicity limits, these micronutrients can induce cell- and tissue-specific molecular-level changes in tight junctional complexes (and by other mechanisms) that reduce barrier leak. An opportunity now exists in critical care-but also medical prophylactic and therapeutic care in general-to consider implementation of select micronutrients at elevated dosages as adjuvant therapeutics in a variety of disease management. This consideration is particularly pointed amidst the COVID-19 pandemic.


Assuntos
Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Micronutrientes/metabolismo , Vitamina A/metabolismo , Vitamina D/metabolismo , Zinco/metabolismo , Animais , COVID-19/epidemiologia , COVID-19/metabolismo , COVID-19/virologia , Humanos , Micronutrientes/farmacologia , Pandemias/prevenção & controle , SARS-CoV-2/fisiologia , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Vitamina A/farmacologia , Vitamina D/farmacologia , Vitaminas/metabolismo , Vitaminas/farmacologia , Zinco/farmacologia
4.
PLoS One ; 16(6): e0251955, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34106957

RESUMO

Newly emerged SARS-CoV-2 is the cause of an ongoing global pandemic leading to severe respiratory disease in humans. SARS-CoV-2 targets epithelial cells in the respiratory tract and lungs, which can lead to amplified chloride secretion and increased leak across epithelial barriers, contributing to severe pneumonia and consolidation of the lungs as seen in many COVID-19 patients. There is an urgent need for a better understanding of the molecular aspects that contribute to SARS-CoV-2-induced pathogenesis and for the development of approaches to mitigate these damaging pathologies. The multifunctional SARS-CoV-2 Envelope (E) protein contributes to virus assembly/egress, and as a membrane protein, also possesses viroporin channel properties that may contribute to epithelial barrier damage, pathogenesis, and disease severity. The extreme C-terminal (ECT) sequence of E also contains a putative PDZ-domain binding motif (PBM), similar to that identified in the E protein of SARS-CoV-1. Here, we screened an array of GST-PDZ domain fusion proteins using either a biotin-labeled WT or mutant ECT peptide from the SARS-CoV-2 E protein. Notably, we identified a singular specific interaction between the WT E peptide and the second PDZ domain of human Zona Occludens-1 (ZO1), one of the key regulators of TJ formation/integrity in all epithelial tissues. We used homogenous time resolve fluorescence (HTRF) as a second complementary approach to further validate this novel modular E-ZO1 interaction. We postulate that SARS-CoV-2 E interacts with ZO1 in infected epithelial cells, and this interaction may contribute, in part, to tight junction damage and epithelial barrier compromise in these cell layers leading to enhanced virus spread and severe dysfunction that leads to morbidity. Prophylactic/therapeutic intervention targeting this virus-host interaction may effectively reduce airway and/or gastrointestinal barrier damage and mitigate virus spread.


Assuntos
COVID-19/metabolismo , COVID-19/virologia , Proteínas do Envelope de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , COVID-19/patologia , Interações Hospedeiro-Patógeno , Humanos , Domínios PDZ , Ligação Proteica , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , SARS-CoV-2/isolamento & purificação , Junções Íntimas/metabolismo
5.
PLoS One ; 15(12): e0242536, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33301441

RESUMO

Retinoic acid (RA) has been shown to improve epithelial and endothelial barrier function and development and even suppress damage inflicted by inflammation on these barriers through regulating immune cell activity. This paper thus sought to determine whether RA could improve baseline barrier function and attenuate TNF-α-induced barrier leak in the human bronchial epithelial cell culture model, 16HBE14o- (16HBE). We show for the first time that RA increases baseline barrier function of these cell layers indicated by an 89% increase in transepithelial electrical resistance (TER) and 22% decrease in 14C-mannitol flux. A simultaneous, RA-induced 70% increase in claudin-4 attests to RA affecting the tight junctional (TJ) complex itself. RA was also effective in alleviating TNF-α-induced 16HBE barrier leak, attenuating 60% of the TNF-α-induced leak to 14C-mannitol and 80% of the leak to 14C-inulin. Interleukin-6-induced barrier leak was also reduced by RA. Treatment of 16HBE cell layers with TNF-α resulted in dramatic decrease in immunostaining for occludin and claudin-4, as well as a downward "band-shift" in occludin Western immunoblots. The presence of RA partially reversed TNF-α's effects on these select TJ proteins. Lastly, RA completely abrogated the TNF-α-induced increase in ERK-1,2 phosphorylation without significantly decreasing the TNF-driven increase in total ERK-1,2. This study suggests RA could be effective as a prophylactic agent in minimizing airway barrier leak and as a therapeutic in preventing leak triggered by inflammatory cascades. Given the growing literature suggesting a "cytokine storm" may be related to COVID-19 morbidity, RA may be a useful adjuvant for use with anti-viral therapies.


Assuntos
Brônquios/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Tretinoína/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Anti-Inflamatórios/farmacologia , Brônquios/citologia , Brônquios/metabolismo , Linhagem Celular , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Permeabilidade/efeitos dos fármacos , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
6.
Biosci Rep ; 40(10)2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32985670

RESUMO

The human bronchial epithelial cell line, 16HBE14o- (16HBE), is widely used as a model for respiratory epithelial diseases and barrier function. During differentiation, transepithelial electrical resistance (TER) increased to approximately 800 Ohms × cm2, while 14C-d-mannitol flux rates (Jm) simultaneously decreased. Tight junctions (TJs) were shown by diffusion potential studies to be anion-selective with PC1/PNa = 1.9. Transepithelial leakiness could be induced by the phorbol ester, protein kinase C (PKC) activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), and the proinflammatory cytokine, tumor necrosis factor-α (TNF-α). Basal barrier function could not be improved by the micronutrients, zinc, or quercetin. Of methodological significance, TER was observed to be more variable and to spontaneously, significantly decrease after initial barrier formation, whereas Jm did not significantly fluctuate or increase. Unlike the strong inverse relationship between TER and Jm during differentiation, differentiated cell layers manifested no relationship between TER and Jm. There was also much greater variability for TER values compared with Jm. Investigating the dependence of 16HBE TER on transcellular ion conductance, inhibition of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) chloride channel with GlyH-101 produced a large decrease in short-circuit current (Isc) and a slight increase in TER, but no significant change in Jm. A strong temperature dependence was observed not only for Isc, but also for TER. In summary, research utilizing 16HBE as a model in airway barrier function studies needs to be aware of the complexity of TER as a parameter of barrier function given the influence of CFTR-dependent transcellular conductance on TER.


Assuntos
Brônquios/citologia , Linhagem Celular/patologia , Células Epiteliais/fisiologia , Mucosa Respiratória/citologia , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Linhagem Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Impedância Elétrica , Células Epiteliais/efeitos dos fármacos , Glicina/análogos & derivados , Glicina/farmacologia , Humanos , Hidrazinas/farmacologia , Manitol/metabolismo , Doenças Respiratórias/patologia , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
7.
bioRxiv ; 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33398268

RESUMO

Newly emerged SARS-CoV-2 is the cause of an ongoing global pandemic leading to severe respiratory disease in humans. SARS-CoV-2 targets epithelial cells in the respiratory tract and lungs, which can lead to amplified chloride secretion and increased leak across epithelial barriers, contributing to severe pneumonia and consolidation of the lungs as seen in many COVID-19 patients. There is an urgent need for a better understanding of the molecular aspects that contribute to SARS-CoV-2 induced pathogenesis and for the development of approaches to mitigate these damaging pathologies. The multifunctional SARS-CoV-2 Envelope (E) protein contributes to virus assembly/egress, and as a membrane protein, also possesses viroporin channel properties that may contribute to epithelial barrier damage, pathogenesis, and disease severity. The extreme C-terminal (ECT) sequence of E also contains a putative PDZ-domain binding motif (PBM), similar to that identified in the E protein of SARS-CoV-1. Here, we screened an array of GST-PDZ domain fusion proteins using either a biotin-labeled WT or mutant ECT peptide from the SARS-CoV-2 E protein. Notably, we identified a singular specific interaction between the WT E peptide and the second PDZ domain of human Zona Occludens-1 (ZO1), one of the key regulators of TJ formation/integrity in all epithelial tissues. We used homogenous time resolve fluorescence (HTRF) as a second complementary approach to further validate this novel modular E-ZO1 interaction. We postulate that SARS-CoV-2 E interacts with ZO1 in infected epithelial cells, and this interaction may contribute, in part, to tight junction damage and epithelial barrier compromise in these cell layers leading to enhanced virus spread and severe respiratory dysfunction that leads to morbidity. Prophylactic/therapeutic intervention targeting this virus-host interaction may effectively reduce airway barrier damage and mitigate virus spread.

8.
J Biomol Tech ; 30(2): 19-24, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31037041

RESUMO

Polar, differentiated epithelial cell culture models (especially at confluence) are difficult to transfect compared with the higher transfection efficiencies that one obtains with relatively less differentiated, nonpolar cell culture models. Here, we sought to develop a strategy to enhance the efficiency of transfecting polar, differentiated epithelial cells. We found that chemically abrading the differentiated CACO-2 human intestinal epithelial cell layer by a trypsin and EDTA pretreatment (before the use of detergent-like transfection reagents) dramatically improved transfection efficiency in this polar, differentiated model. Although this treatment did improve the transfection efficiency, it also induced leakiness in the epithelial barrier by both opening tight junctional complexes and by creating holes in the cell layer because of low-level cell death and detachment. Thus, this approach to enhance the transfection efficiency of polar, differentiated cells will be useful for assessment of the effect of the transfected/expressed protein on (re)formation of an epithelial barrier rather than on a functional barrier itself.


Assuntos
Células Epiteliais/metabolismo , Junções Íntimas/metabolismo , Transfecção/métodos , Células CACO-2 , Diferenciação Celular/fisiologia , Polaridade Celular/fisiologia , Células Cultivadas , Células Epiteliais/citologia , Humanos , Fatores de Tempo
9.
Trends Cell Mol Biol ; 13: 99-114, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31156296

RESUMO

Epithelial barrier function studies often attribute alterations in barrier function to induced changes in tight junctional (TJ) complexes. The occurrence of spontaneous and cytokine-induced, focal cell detachment in cell layers of the human gingival epithelial cell line, Gie-3B11, highlights the danger of this assumption without confirmatory experimentation. Gie-3B11 cell layers manifest morphological polarity, TJ complexes and barrier function after confluence but fail to then maintain a stable epithelial barrier. Transepithelial electrical resistance rises to over 100 ohms x cm2 a few days after seeding cell layers at a confluent density, but then spontaneously declines, with simultaneous, inverse changes in transepithelial 14C-D-mannitol diffusion rates. This barrier decline correlates with the appearance of focal cell detachment/hole formation in cell layers. Both barrier compromise (decreased electrical resistance; increased 14C-D-mannitol leak) and hole formation are accelerated and exaggerated by exposing cell layers to proinflammatory cytokines. Both are inhibited by increasing the basal-lateral medium compartment volume, suggesting that cell layers are secreting factor(s) across their basal-lateral surfaces that are causal to hole formation. The molecular mechanism of cell death/detachment here is not as significant as the implications of hole formation for the correct interpretation of barrier function studies. Barrier changes in any epithelial model should be attributed to induced changes in TJ complexes only after thorough investigation.

10.
J Agric Food Chem ; 65(50): 10950-10958, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29172516

RESUMO

The oral epithelium represents a major interface between an organism and its external environment. Improving this barrier at the molecular level can provide an organism added protection from microbial-based diseases. Barrier function of the Gie-3B11-human-gingival-epithelial-cell-culture model is enhanced by the micronutrients zinc, quercetin, retinoic acid, and acetyl-11-keto-ß-boswellic acid, as observed by a concentration-dependent increase in transepithelial electrical resistance and a decrease in transepithelial 14C-d-mannitol permeability. With this improvement of tight-junction (TJ)-barrier function (reduced leak) comes a pattern of micronutrient-induced changes in TJ claudin abundance that is specific to each individual micronutrient, along with changes in claudin subcellular localization. These micronutrients were effective not only when administered to both cell surfaces simultaneously but also when administered to the apical surface alone, the surface to which the micronutrients would be presented in routine clinical use. The biomedical implications of micronutrient enhancement of the oral-epithelial barrier are discussed.


Assuntos
Células Epiteliais/metabolismo , Micronutrientes/metabolismo , Boca/metabolismo , Junções Íntimas/metabolismo , Células CACO-2 , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Permeabilidade , Quercetina/metabolismo , Tretinoína/metabolismo , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...