Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
2.
Front Immunol ; 14: 1143034, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063887

RESUMO

East Coast fever is an acute bovine disease caused by the apicomplexan parasite Theileria parva and is regarded as one of the most important tick-vectored diseases in Africa. The current vaccination procedure has many drawbacks, as it involves the use of live T. parva sporozoites. As a novel vaccination strategy, we have constructed the recombinant lumpy skin disease virus (LSDV) named LSDV-SODis-p67HA-BLV-Gag, encoding a modified form of the T. parva p67 surface antigen (p67HA), as well as the bovine leukemia virus (BLV) gag gene for the formation of virus-like particles (VLPs) to potentially enhance p67 immunogenicity. In place of the native sequence, the chimeric p67HA antigen has the human tissue plasminogen activator signal sequence and the influenza hemagglutinin A2 transmembrane domain and cytoplasmic tail. p67HA was detected on the surface of infected cells, and VLPs comprising BLV Gag and p67HA were produced. We also show that higher multiple bands observed in western blot analysis are due to glycosylation of p67. The two vaccines, pMExT-p67HA (DNA) and LSDV-SODis-p67HA-BLV-Gag, were tested for immunogenicity in mice. p67-binding antibodies were produced by vaccinated animals, with higher titers detected in mice vaccinated with the recombinant LSDV. This candidate dual vaccine warrants further testing in cattle.


Assuntos
Doença Nodular Cutânea , Vacinas Protozoárias , Theileriose , Bovinos , Humanos , Camundongos , Animais , Theileriose/prevenção & controle , Theileriose/parasitologia , Ativador de Plasminogênio Tecidual , Proteínas de Protozoários , Doença Nodular Cutânea/prevenção & controle
3.
Front Plant Sci ; 14: 1146234, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36959936

RESUMO

Molecular farming of vaccines has been heralded as a cheap, safe and scalable production platform. In reality, however, differences in the plant biosynthetic machinery, compared to mammalian cells, can complicate the production of viral glycoproteins. Remodelling the secretory pathway presents an opportunity to support key post-translational modifications, and to tailor aspects of glycosylation and glycosylation-directed folding. In this study, we applied an integrated host and glyco-engineering approach, NXS/T Generation™, to produce a SARS-CoV-2 prefusion spike trimer in Nicotiana benthamiana as a model antigen from an emerging virus. The size exclusion-purified protein exhibited a characteristic prefusion structure when viewed by transmission electron microscopy, and this was indistinguishable from the equivalent mammalian cell-produced antigen. The plant-produced protein was decorated with under-processed oligomannose N-glycans and exhibited a site occupancy that was comparable to the equivalent protein produced in mammalian cell culture. Complex-type glycans were almost entirely absent from the plant-derived material, which contrasted against the predominantly mature, complex glycans that were observed on the mammalian cell culture-derived protein. The plant-derived antigen elicited neutralizing antibodies against both the matched Wuhan and heterologous Delta SARS-CoV-2 variants in immunized hamsters, although titres were lower than those induced by the comparator mammalian antigen. Animals vaccinated with the plant-derived antigen exhibited reduced viral loads following challenge, as well as significant protection from SARS-CoV-2 disease as evidenced by reduced lung pathology, lower viral loads and protection from weight loss. Nonetheless, animals immunized with the mammalian cell-culture-derived protein were better protected in this challenge model suggesting that more faithfully reproducing the native glycoprotein structure and associated glycosylation of the antigen may be desirable.

4.
Virology ; 580: 88-97, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36801669

RESUMO

Human papillomaviruses (HPVs) are known to be the cause of anogenital and oropharyngeal cancers as well as genital and common warts. HPV pseudovirions (PsVs) are synthetic viral particles that are made up of the L1 major and L2 minor HPV capsid proteins and up to 8 Kb of encapsidated pseudogenome dsDNA. HPV PsVs are used to test novel neutralising antibodies elicited by vaccines, for studying the virus life cycle, and potentially for the delivery of therapeutic DNA vaccines. HPV PsVs are typically produced in mammalian cells, however, it has recently been shown that Papillomavirus PsVs can be produced in plants, a potentially safer, cheaper and more easily scalable means of production. We analysed the encapsidation frequencies of pseudogenomes expressing EGFP, ranging in size from 4.8 Kb to 7.8 Kb, by plant-made HPV-35 L1/L2 particles. The smaller pseudogenomes were found to be packaged more efficiently into PsVs as higher concentrations of encapsidated DNA and higher levels of EGFP expression were obtained with the 4.8 Kb pseudogenome, compared to the larger 5.8-7.8 Kb pseudogenomes. Thus, smaller pseudogenomes, of 4.8 Kb, should be used for efficient plant production of HPV-35 PsVs.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Animais , Humanos , Papillomavirus Humano , Proteínas do Capsídeo/metabolismo , Papillomaviridae/genética , DNA , Mamíferos
5.
J Wildl Dis ; 58(4): 882-886, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36136451

RESUMO

Psittacine beak and feather disease (PBFD) is one of the most important viral diseases affecting parrot species worldwide. Outbreaks of PBFD have been reported in wild endemic and endangered South African Cape Parrots (Poicephalus robustus), most recently in 2008. A previous study of wild Cape Parrots in the Eastern Cape region of South Africa in 2010-11 found 34/49 birds positive for beak and feather disease virus (BFDV), the causative agent of PBFD, showing that the outbreak was still ongoing. The present study (2015-16) screened 30 blood samples from the same Cape Parrot population for BFDV infection by PCR: all parrots were found to be BFDV DNA-negative, which showed both that BFDV infection in the region has declined and that the parrot population has recovered. Our data contribute to the important negative data set which permits monitoring the progress of BFDV infections in wild Psittaciformes. We recommend a PCR method with universal BFDV primers as a quick, easy, and consistent diagnostic test for BFDV detection.


Assuntos
Circovirus , Animais , África do Sul/epidemiologia
6.
Biotechnol Bioeng ; 119(10): 2919-2937, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35781691

RESUMO

Heterologous glycoprotein production relies on host glycosylation-dependent folding. When the biosynthetic machinery differs from the usual expression host, there is scope to remodel the assembly pathway to enhance glycoprotein production. Here we explore the integration of chaperone coexpression with glyco-engineering to improve the production of a model HIV-1 envelope antigen. Calreticulin was coexpressed to support protein folding together with Leishmania major STT3D oligosaccharyltransferase, to improve glycan occupancy, RNA interference to suppress the formation of truncated glycans, and Nicotiana benthamiana plants lacking α1,3-fucosyltransferase and ß1,2-xylosyltransferase was used as an expression host to prevent plant-specific complex N-glycans forming. This approach reduced the formation of undesired aggregates, which predominated in the absence of glyco-engineering. The resulting antigen also exhibited increased glycan occupancy, albeit to a slightly lower level than the equivalent mammalian cell-produced protein. The antigen was decorated almost exclusively with oligomannose glycans, which were less processed compared with the mammalian protein. Immunized rabbits developed comparable immune responses to the plant-produced and mammalian cell-derived antigens, including the induction of autologous neutralizing antibodies when the proteins were used to boost DNA and modified vaccinia Ankara virus-vectored vaccines. This study demonstrates that engineering glycosylation-directed folding offers a promising route to enhance the production of complex viral glycoproteins in plants.


Assuntos
Anticorpos Neutralizantes , Infecções por HIV , Animais , Antígenos Virais/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilação , Anticorpos Anti-HIV , Mamíferos/metabolismo , Polissacarídeos/metabolismo , Coelhos
7.
Nanotechnology ; 33(48)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35882111

RESUMO

Two-component self-assembling virus-like particles (VLPs) are promising scaffolds for achieving high-density display of HIV-1 envelope (gp140) trimers, which can improve the induction of neutralising antibodies (NAbs). In this study gp140 was displayed on the surface of VLPs formed by the AP205 phage coat protein. The CAP256 SU gp140 antigen was selected as the patient who this virus was isolated from developed broadly neutralising antibodies (bNAbs) shortly after superinfection with this virus. The CAP256 SU envelope is also sensitive to several bNAbs and has shown enhanced reactivity for certain bNAb precursors. A fusion protein comprising the HIV-1 CAP256 SU gp140 and the SpyTag (ST) (gp140-ST) was produced in HEK293 cells, and trimers were purified to homogeneity using gel filtration. SpyCatcher (SC)-AP205 VLPs were produced inEscherichia coliand purified by ultracentrifugation. The gp140-ST trimers and the SC-AP205 VLPs were mixed in varying molar ratios to generate VLPs displaying the glycoprotein (AP205-gp140-ST particles). Dynamic light scattering, negative stain electron microscopy and 2D classification indicated that gp140-ST was successfully bound to the VLPs, although not all potential binding sites were occupied. The immunogenicity of the coupled VLPs was evaluated in a pilot study in rabbits. One group was injected four times with coupled VLPs, and the second group was primed with DNA vaccines expressing Env and a mosaic Gag, followed by modified vaccinia Ankara expressing the same antigens. The animals were then boosted twice with coupled VLPs. Encouragingly, gp140-ST displayed on SC-AP205 VLPs was an effective boost to heterologously primed rabbits, leading to induction of autologous Tier 2 neutralising antibodies in 2/5 rabbits. However, four inoculations of coupled VLPs alone failed to elicit any Tier 2 antibodies. These results demonstrate that the native-like structure of HIV-1 envelope trimers and selection of a geometrically-suitable nanoparticle scaffold to achieve a high-density display of the trimers are important considerations that could improve the effect of nanoparticle-displayed gp140.


Assuntos
HIV-1 , Nanopartículas , Vacinas , Animais , Anticorpos Amplamente Neutralizantes , Células HEK293 , Humanos , Projetos Piloto , Coelhos , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
8.
J Gen Virol ; 103(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35594121

RESUMO

In vivo nucleic expression technologies using DNA or mRNA offer several advantages for recombinant gene expression. Their inherent ability to generate natively expressed recombinant proteins and antigens allows these technologies to mimic foreign gene expression without infection. Furthermore, foreign nucleic acid fragments have an inherent ability to act as natural immune adjuvants and stimulate innate pathogen- and DNA damage-associated receptors that are responsible for activating pathogen-associated molecular pattern (PAMP) and DNA damage-associated molecular pattern (DAMP) signalling pathways. This makes nucleic-acid-based expression technologies attractive for a wide range of vaccine and oncolytic immunotherapeutic uses. Recently, RNA vaccines have demonstrated their efficacy in generating strong humoral and cellular immune responses for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). DNA vaccines, which are more stable and easier to manufacture, generate similar immune responses to RNA, but typically exhibit lower immunogenicity. Here we report on a novel method of constructing self-amplifying DNA expression vectors that have the potential to amplify and enhance gene/antigen expression at a cellular level by increasing per cell gene copy numbers, boost genomic adjuvating effects and mitigate through replication many of the problems faced by non-replicating vectors such as degradation, methylation and gene silencing. These vectors employ a viral origin rolling circle replication cycle in mammalian host cells that amplifies the vector and gene of interest (GOI) copy number, maintaining themselves as nuclear episomes. We show that these vectors maintain persistently elevated GOI expression levels at the cellular level and induce morphological cellular alterations synonymous with increased cellular stress.


Assuntos
COVID-19 , Circovirus , Vacinas de DNA , Animais , Circovirus/genética , Vetores Genéticos/genética , Mamíferos , SARS-CoV-2 , Vacinas de DNA/genética
10.
Vaccines (Basel) ; 10(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35214669

RESUMO

The current method to protect cattle against East Coast Fever (ECF) involves the use of live Theileria parva sporozoites. Although this provides immunity, using live parasites has many disadvantages, such as contributing to the spread of ECF. Subunit vaccines based on the sporozoite surface protein p67 have been investigated as a replacement for the current method. In this study, two DNA vaccines expressing recombinant forms of p67 designed to display on retrovirus-like particles were constructed with the aim of improving immunogenicity. The native leader sequence was replaced with the human tissue plasminogen activator leader in both vaccines. The full-length p67 gene was included in the first DNA vaccine (p67); in the second, the transmembrane domain and cytoplasmic tail were replaced with those of an influenza A virus hemagglutinin 5 (p67HA). Immunofluorescent staining of fixed and live transfected mammalian cells showed that both p67 and p67HA were successfully expressed, and p67HA localised on the cell surface. Furthermore, p67HA was displayed on the surface of both bovine leukaemia virus (BLV) Gag and HIV-1 Gag virus-like particles (VLPs) made in the same cells. Mice vaccinated with DNA vaccines expressing p67 and p67HA alone, or p67HA with BLV or HIV-1 Gag, developed high titres of p67 and BLV Gag-binding antibodies. Here we show that it is possible to integrate a form of p67 containing all known antigenic domains into VLPs. This p67HA-VLP combination has the potential to be incorporated into a vaccine against ECF, as a DNA vaccine or as other vaccine platforms.

11.
N Biotechnol ; 68: 48-56, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35114407

RESUMO

African horse sickness (AHS) is a debilitating and highly infectious arthropod-borne disease affecting all species of Equidae. The causative agent of AHS is the non-enveloped dsRNA African horse sickness virus (AHSV), belonging in the genus Orbivirus, family Reoviridae. The identification and surveillance of AHSV by simple and reliable diagnostic tools is essential for managing AHS outbreaks. Indirect ELISAs utilising soluble AHSV antigen or recombinant VP7, an immunodominant and serogroup-specific major core structural protein, are commonly used for serological diagnostic assays. Plant production systems are a significant alternative for recombinant protein production, as they are safe, easily scalable, production rates are rapid and upstream processes are more cost-effective than more traditional expression systems. This pilot study reports the successful production of AHSV-5 VP7 quasi-crystals in Nicotiana benthamiana by Agrobacterium tumefaciens-mediated transient expression using the self-replicating pRIC3.0 plant expression vector. After purification by means of density gradient ultracentrifugation, yields of pure VP7 of 2.66 µg/g fresh leaf mass (FLM) were achieved. Purified plant-produced AHSV-5 VP7 detected AHSV-specific antibodies in horse sera in an indirect ELISA and was able to distinguish between AHSV-positive and negative sera. Additionally, plant-produced AHSV-5 VP7 detected AHSV-specific antibodies to the same degree as E. coli-produced VP7. These results justify further investigation into the diagnostic capability of plant-produced AHSV VP7 quasi-crystals. To the best of our knowledge, this is the first report of AHSV VP7 quasi-crystal production in N. benthamiana and the first time that plant-produced VP7's potential as a diagnostic has been assessed.


Assuntos
Vírus da Doença Equina Africana , Doença Equina Africana , Doença Equina Africana/diagnóstico , Vírus da Doença Equina Africana/genética , Animais , Escherichia coli , Cavalos , Projetos Piloto , Proteínas do Core Viral/metabolismo
13.
Nat Rev Mater ; 7(5): 372-388, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34900343

RESUMO

Biologics - medications derived from a biological source - are increasingly used as pharmaceuticals, for example, as vaccines. Biologics are usually produced in bacterial, mammalian or insect cells. Alternatively, plant molecular farming, that is, the manufacture of biologics in plant cells, transgenic plants and algae, offers a cheaper and easily adaptable strategy for the production of biologics, in particular, in low-resource settings. In this Review, we discuss current vaccination challenges, such as cold chain requirements, and highlight how plant molecular farming in combination with advanced materials can be applied to address these challenges. The production of plant viruses and virus-based nanotechnologies in plants enables low-cost and regional fabrication of thermostable vaccines. We also highlight key new vaccine delivery technologies, including microneedle patches and material platforms for intranasal and oral delivery. Finally, we provide an outlook of future possibilities for plant molecular farming of next-generation vaccines and biologics.

14.
Front Plant Sci ; 12: 738619, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589108

RESUMO

West Nile virus (WNV) is a globally disseminated Flavivirus that is associated with encephalitis outbreaks in humans and horses. The continuous global outbreaks of West Nile disease in the bird, human, and horse populations, with no preventative measures for humans, pose a major public health threat. The development of a vaccine that contributes to the "One Health" Initiative could be the answer to prevent the spread of the virus and control human and animal disease. The current commercially available veterinary vaccines are generally costly and most require high levels of biosafety for their manufacture. Consequently, we explored making a particulate vaccine candidate made transiently in plants as a more cost-effective and safer means of production. A WNV virus-like particle-display-based vaccine candidate was generated by the use of the SpyTag/SpyCatcher (ST/SC) conjugation system. The WNV envelope protein domain III (EDIII), which contains WNV-specific epitopes, was fused to and displayed on AP205 phage virus-like particles (VLPs) following the production of both separately in Nicotiana benthamiana. Co-purification of AP205 and EDIII genetically fused to ST and SC, respectively, resulted in the conjugated VLPs displaying EDIII with an average coupling efficiency of 51%. Subcutaneous immunisation of mice with 5 µg of purified AP205: EDIII VLPs elicited a potent IgG response to WNV EDIII. This study presents the potential plants being used as biofactories for making significant pharmaceutical products for the "One Health" Initiative and could be used to address the need for their local production in low- and middle-income countries (LMICs).

15.
Front Plant Sci ; 12: 709344, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367227

RESUMO

There is an urgent need to establish large scale biopharmaceutical manufacturing capacity in Africa where the infrastructure for biologics production is severely limited. Molecular farming, whereby pharmaceuticals are produced in plants, offers a cheaper alternative to mainstream expression platforms, and is amenable to rapid large-scale production. However, there are several differences along the plant protein secretory pathway compared to mammalian systems, which constrain the production of complex pharmaceuticals. Viral envelope glycoproteins are important targets for immunization, yet in some cases they accumulate poorly in plants and may not be properly processed. Whilst the co-expression of human chaperones and furin proteases has shown promise, it is presently unclear how plant-specific differences in glycosylation impact the production of these proteins. In many cases it may be necessary to reproduce features of their native glycosylation to produce immunologically relevant vaccines, given that glycosylation is central to the folding and immunogenicity of these antigens. Building on previous work, we transiently expressed model glycoproteins from HIV and Marburg virus in Nicotiana benthamiana and mammalian cells. The proteins were purified and their site-specific glycosylation was determined by mass-spectrometry. Both glycoproteins yielded increased amounts of protein aggregates when produced in plants compared to the equivalent mammalian cell-derived proteins. The glycosylation profiles of the plant-produced glycoproteins were distinct from the mammalian cell produced proteins: they displayed lower levels of glycan occupancy, reduced complex glycans and large amounts of paucimannosidic structures. The elucidation of the site-specific glycosylation of viral glycoproteins produced in N. benthamiana is an important step toward producing heterologous viral glycoproteins in plants with authentic human-like glycosylation.

16.
Virus Res ; 294: 198284, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33421520

RESUMO

African horse sickness (AHS) is a devastating viral disease affecting equines and has resulted in many disastrous epizootics. To date, no successful therapeutic treatment exists for AHS, and commercially used live-attenuated vaccines have various undesirable side effects. Previous studies have shown that mice inoculated with insoluble African horse sickness virus (AHSV) VP7 crystals are protected from live challenge with a lethal dose of AHSV. This study investigates the humoral and cell-mediated immune responses in guinea-pigs to a safer monovalent vaccine alternative based on AHSV-5 VP7 quasi-crystals produced in plants. Guinea-pigs received prime- and boost-inoculations of between 10 and 50 µg of purified plant-produced AHSV VP7. Western immunoblot analysis of the humoral response showed stimulation of high titres of anti-VP7 antibodies 28 days after the boost-inoculation in sera from three of the five experimental animals. In addition, RNA-seq transcriptome profiling of guinea-pig spleen-derived RNA highlighted thirty significantly (q ≤ 0.05) differentially expressed genes involved in innate and adaptive immunity. Differential expression of genes involved in Th1, Th2 and Th17 cell differentiation suggest a cell-mediated immune response to AHSV-5 VP7. Upregulation of several important cytokines and cytokine receptors were noted, including TNFSF14, CX3CR1, IFNLR1 and IL17RA. Upregulation of IL17RA suggests a Th17 response which has been reported as a key component in AHSV immunity. While further investigation is needed to validate these findings, these results suggest that AHSV-5 VP7 quasi-crystals produced in N. benthamiana are immunogenic and induce both humoral and cell-mediated responses.


Assuntos
Vírus da Doença Equina Africana , Doença Equina Africana , Vacinas Virais , Doença Equina Africana/prevenção & controle , Vírus da Doença Equina Africana/genética , Animais , Anticorpos Antivirais , Cobaias , Cavalos , Imunidade , Camundongos , Receptores de Interferon , Vacinas Atenuadas
17.
Front Plant Sci ; 12: 798822, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35058959

RESUMO

Given the complex maturation requirements of viral glycoproteins and the challenge they often pose for expression in plants, the identification of host constraints precluding their efficient production is a priority for the molecular farming of vaccines. Building on previous work to improve viral glycoprotein production in plants, we investigated the production of a soluble SARS-CoV-2 spike comprising the ectopic portion of the glycoprotein. This was successfully transiently expressed in N. benthamiana by co-expressing the human lectin-binding chaperone calreticulin, which substantially increased the accumulation of the glycoprotein. The spike was mostly unprocessed unless the protease furin was co-expressed which resulted in highly efficient processing of the glycoprotein. Co-expression of several broad-spectrum protease inhibitors did not improve accumulation of the protein any further. The protein was successfully purified by affinity chromatography and gel filtration, although the purified product was heterogenous and the yields were low. Immunogenicity of the antigen was tested in BALB/c mice, and cellular and antibody responses were elicited after low dose inoculation with the adjuvanted protein. This work constitutes an important proof-of-concept for host plant engineering in the context of rapid vaccine development for SARS-CoV-2 and other emerging viruses.

18.
Front Plant Sci ; 11: 609207, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343609

RESUMO

Immunization with recombinant glycoprotein-based vaccines is a promising approach to induce protective immunity against viruses. However, the complex biosynthetic maturation requirements of these glycoproteins typically necessitate their production in mammalian cells to support their folding and post-translational modification. Despite these clear advantages, the incumbent costs and infrastructure requirements with this approach can be prohibitive in developing countries, and the production scales and timelines may prove limiting when applying these production systems to the control of pandemic viral outbreaks. Plant molecular farming of viral glycoproteins has been suggested as a cheap and rapidly scalable alternative production system, with the potential to perform post-translational modifications that are comparable to mammalian cells. Consequently, plant-produced glycoprotein vaccines for seasonal and pandemic influenza have shown promise in clinical trials, and vaccine candidates against the newly emergent severe acute respiratory syndrome coronavirus-2 have entered into late stage preclinical and clinical testing. However, many other viral glycoproteins accumulate poorly in plants, and are not appropriately processed along the secretory pathway due to differences in the host cellular machinery. Furthermore, plant-derived glycoproteins often contain glycoforms that are antigenically distinct from those present on the native virus, and may also be under-glycosylated in some instances. Recent advances in the field have increased the complexity and yields of biologics that can be produced in plants, and have now enabled the expression of many viral glycoproteins which could not previously be produced in plant systems. In contrast to the empirical optimization that predominated during the early years of molecular farming, the next generation of plant-made products are being produced by developing rational, tailor-made approaches to support their production. This has involved the elimination of plant-specific glycoforms and the introduction into plants of elements of the biosynthetic machinery from different expression hosts. These approaches have resulted in the production of mammalian N-linked glycans and the formation of O-glycan moieties in planta. More recently, plant molecular engineering approaches have also been applied to improve the glycan occupancy of proteins which are not appropriately glycosylated, and to support the folding and processing of viral glycoproteins where the cellular machinery differs from the usual expression host of the protein. Here we highlight recent achievements and remaining challenges in glycoengineering and the engineering of glycosylation-directed folding pathways in plants, and discuss how these can be applied to produce recombinant viral glycoproteins vaccines.

19.
Pathogens ; 9(12)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260725

RESUMO

Vaccine efficacy requires the production of neutralising antibodies which offer protection against the native virus. The current gold standard for determining the presence of neutralising antibodies is the pseudovirion-based neutralisation assay (PBNA). PBNAs utilise pseudovirions (PsVs), structures which mimic native virus capsids, but contain non-viral nucleic material. PsVs are currently produced in expensive cell culture systems, which limits their production, yet plant expression systems may offer cheaper, safer alternatives. Our aim was to determine whether plants could be used for the production of functional PsVs of bovine papillomavirus 1 (BPV1), an important causative agent of economically damaging bovine papillomas in cattle and equine sarcoids in horses and wild equids. BPV1 capsid proteins, L1 and L2, and a self-replicating reporter plasmid were transiently expressed in Nicotiana benthamiana to produce virus-like particles (VLPs) and PsVs. Strategies to enhance particle yields were investigated and optimised protocols were established. The PsVs' ability to infect mammalian cells and express their encapsidated reporter genes in vitro was confirmed, and their functionality as reagents in PBNAs was demonstrated through their neutralisation by several different antibodies. This is the first report of BPV PsVs expressed in plants and demonstrates the potential for the development of therapeutic veterinary vaccines in planta.

20.
Vaccines (Basel) ; 8(4)2020 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33291259

RESUMO

Cervical cancer is ranked fourth among the top cancers in women and is the second most common cancer in low- and middle-income regions, with ~570,000 new cases reported in 2018, which attributed to 84% of worldwide cervical cancer cases. Three commercially available prophylactic Human papillomavirus (HPV) vaccines are effective at preventing HPV infections. However, these vaccines are expensive due to their complex production systems, therefore limiting their use in developing countries. Recently, the use of plants to produce vaccines has emerged as a cost-effective alternative to conventionally used expression systems. Here, L1 proteins of eight high-risk (HPV 16, 18, 31, 33, 35, 45, 52, and 58) and two low risk (HPV 6 and 34) HPV types were successfully expressed in Nicotiana benthamiana, and transmission electron microscopy (TEM) analysis showed the presence of VLPs and/or capsomeres. Immunogenicity studies were conducted in mice utilizing HPV 35, 52, and 58 and showed that type-specific L1-specific antibodies were produced which were able to successfully neutralize homologous HPV pseudovirions in pseudovirion-based neutralization assays (PBNAs). This work demonstrated the potential for using plant-based transient expression systems to produce affordable and immunogenic HPV vaccines, particularly for developing countries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...