Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 199: 116028, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38217916

RESUMO

The Chinese mitten crab (Eriocheir sinensis) is considered one of the 100 most invasive alien species in the world. Despite this, its role in ecosystems, among others, in the trophodynamics of pollutants including mercury, is still not fully understood. Becoming an increasingly important and widespread element of the trophic chain in new areas arouses interest from humans as consumers. Hence it is important to determine the level of contaminants (including Hg) in alien species. In the present study, great attention was paid separately to the soft tissues and hard tissues of the exoskeleton, which may play an important role in the detoxification of the crab's body from toxic Hg. The study was conducted on crabs collected in 2011-2021 in the Vistula Lagoon. Concentrations of total mercury and its forms were carried out using a Direct Mercury Analyzer, DMA-80 (Milestone, Italy). The present study showed that mercury accumulation of the crab's body largely occurred through the gills, followed by the oral route. The distribution of Hg in the crab's organs was related to the trophic origin of the mercury, while halide-bound mercury and semilabile forms from the respiration (filtration) process were redistributed into the crab's exoskeleton. Male crabs, compared to females, had a higher Hg burden on internal organs such as their hepatopancreas and gonads. Hg concentration in hard tissues was closely related to the type of mineralization of the carapace. The elimination of Hg from the muscles and from the hepatopancreas into the carapace was one of the important detoxification processes of the crab's body. Thus, moulting crabs effectively remove Hg protecting its body from the neurotoxin. As a result, a smaller Hg load is biomagnified, making the crab's muscle tissue fit for human consumption. The observed decrease in Hg concentrations from 2011 to 2021, as well as the spatial variability of Hg in the crab's muscles, testify that the crab can serve as a biomonitor for ecosystem changes.


Assuntos
Braquiúros , Poluentes Ambientais , Mercúrio , Humanos , Animais , Feminino , Masculino , Ecossistema , Carga Corporal (Radioterapia) , Mercúrio/análise , Alimentos Marinhos
2.
Mar Pollut Bull ; 197: 115718, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37922749

RESUMO

One of benthic organisms exposed to contact with mercury in the southern Baltic is alien species of clam: Dreissena polymorpha. As this organism is increasingly dynamic in various regions of the world including the southern Baltic region, it is reasonable to ask whether it tolerates elevated concentrations of xenobiotics? Does it effectively eliminate Hg? The study determined the effects of biometric parameters and water temperature on the rate of accumulation and efficiency of eliminating Hg from body. Investigations focused on the shell which represents poorly-recognized role in the process of Hg distribution in clams. The results showed that especially during warm season, clams effectively reduced the levels of Hg in their body by the biodilution of Hg and reproduction. Important factor influencing detoxification was Hg transfer from the soft tissue to the shell. This protects the soft tissue against the toxic effect of Hg.


Assuntos
Bivalves , Dreissena , Mercúrio , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Bioacumulação , Biometria
3.
Sci Total Environ ; 858(Pt 3): 160018, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356744

RESUMO

Mercury (Hg) is one of the most hazardous environmental pollutants, negatively affecting the ecosystem. The pathways of Hg elimination are well recognized in organisms from higher trophic levels compared to invertebrates such as clams. The aim of this study was to identify pathways of Hg accumulation in an alien species clams: Rangia cuneata, which represented an unrecognized source of Hg into the trophic chain of the southern Baltic Sea. An important aspect of this study was to determine Hg detoxification processes based on physiological state and biometric parameters of the atlatntic rangia. Special consideration was given to the role of shell in this process and the form of Hg in which it occurred. The study was also considered in terms of geographical changes in the Hg concentration in clams and the factors involved. Sex did not determine the concentration of Hg and its fraction in clams soft tissue and shell. Clams detoxified xenobiotic effectively in summer when their metabolism was accelerated. As a result, clams grew faster in warmer water than they accumulated Hg. In addition, this process was intensified by their reproduction. The mass of accumulated mercury was higher in the shell mass than in the body mass in summer. Transfer of Hg from the body to the shell depended on the forms Hg, mostly HgS. Geographical changes in the mercury concentration in clams was related to the form of Hg in the sediment. In areas where were more fines sediment fraction and organic matter accumulated in the sediment, mercury was present in a less bioavailable form, which caused that clams had lower Hg concentrations in their body. With assumption that in the future, due to its increasingly frequent occurrence, atlatntic rangia will become more common component of fish diet, a smaller load of toxic mercury will be introduced to the marine trophic chain.


Assuntos
Ecossistema , Mercúrio
4.
Environ Res ; 197: 111181, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33878319

RESUMO

This study aimed to investigate the sequestration of phenolic endocrine disrupting compounds (EDCs) such as bisphenol A (BPA), 4-t-octylphenol (4-t-OP), and 4-nonylphenol (4-NP) in the shells of the mature clam Rangia cuneata from the Vistula Lagoon (southern Baltic Sea) and to determine the influence of sex and shell length on bioaccumulation of these contaminants. Even though there is broad interest in EDCs influences on aquatic organisms, these basic parameters are poorly understood, yet necessary for assessing environmental risks for clams. Average proportions of the total body burden (ng/individual) deposited in shells of R. cuneata were more than 70% for BPA and 4-NP and up to 32% for 4-t-OP. These results indicate that shell storage can be an important route for elimination of specific EDCs. Relationships between EDCs concentrations and the size and sex of R. cuneata indicate that females and large individuals experience greater exposures to the adverse effects of these pollutants than males and smaller clams. This effect could have significant impacts on population ecology and ultimately affect the entire ecosystem, in which bivalves play an important role. In the context of using clams to assess water pollution, the co-variation of EDCs concentrations with the size and sex of bivalves could influence the quality of monitoring data, unless accounted for in sampling design and data analysis.


Assuntos
Bivalves , Disruptores Endócrinos , Poluentes Químicos da Água , Animais , Compostos Benzidrílicos/análise , Compostos Benzidrílicos/toxicidade , Bioacumulação , Ecossistema , Disruptores Endócrinos/análise , Disruptores Endócrinos/toxicidade , Monitoramento Ambiental , Feminino , Humanos , Masculino , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...