Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Drug Test Anal ; 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37671588

RESUMO

Gene doping in horses is a threat to the fairness in sport and has serious implications for animal welfare. To investigate the effect of long-term storage on the detection of AAV in plasma and whole blood, samples from an administration study using an adeno-associated virus serotype 6 expressing green fluorescence protein (AAV6-GFP) were stored at -20°C for 8 months before analysis. The AAV vector was detected in stored plasma samples, following the same detection profile as the fresh plasma samples. The stored blood showed lower overall DNA detection but followed the same detection profile as the plasma samples. This study provides confidence that re-analysing plasma samples and/or analysing a frozen 'B' sample with different matrix such as whole blood after prolonged storage will still result in the detection of gene doping material.

2.
Anim Genet ; 54(4): 470-482, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37288798

RESUMO

We present here the use of targeted, long-read sequencing of the myostatin (MSTN) gene as a model to detect potential gene editing events in Thoroughbred horses. MSTN is a negative regulator of muscle development, making the gene a prime candidate target for gene doping. By sequencing the complete gene in one PCR product, we can catalogue all mutations without the need to produce short-fragment libraries. A panel of reference material fragments with defined mutations was constructed and successfully sequenced by both Oxford Nanopore and Illumina-based methods, showing that gene doping editing events can be detected using this technology. To ascertain the normal variation within the population, we sequenced the MSTN gene in 119 UK Thoroughbred horses. Variants from the reference genome were assigned to haplotypes and eight distinct patterns, designated Hap1 (reference genome) to Hap8, were determined with haplotypes Hap2 and Hap3 (which includes the 'speed gene' variant) being far the most prevalent. Hap3 was most abundant in flat-racing horses, whereas Hap2 was most abundant in jump-racing. Within this data set, results for 105 racehorses from out-of-competition sampling were compared between matrices of extracted DNA and direct PCR of whole blood from lithium heparin gel tubes, and strong agreement was found between the two methods. The direct-blood PCR was achieved without compromising the sample prior to plasma separation for analytical chemistry, and could thus be used as part of a routine screening workflow for gene editing detection.


Assuntos
Edição de Genes , Miostatina , Cavalos/genética , Animais , Haplótipos , Miostatina/genética , DNA , Sequência de Bases
3.
Drug Test Anal ; 14(8): 1429-1437, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35362263

RESUMO

Gene editing and subsequent cloning techniques offer great potential not only in genetic disease correction in domestic animals but also in livestock production by enhancement of desirable traits. The existence of the technology, however, leaves it open to potential misuse in performance-led sports such as horseracing and other equestrian events. Recent advances in equine gene editing, regarding the generation of gene-edited embryos using CRISPR/Cas9 technology and somatic cell nuclear transfer, have highlighted the need to develop tools to detect potential prohibited use of the technology. One possible method involves the characterisation of the mitochondrial genome (which is not routinely preserved during cloning) and comparing it with the sequence of the registered dam. We present here our approach to whole-mitochondrial sequencing using tiled long-range PCR and next-generation sequencing. To determine whether the background mutation rate in the mitochondrial genome could potentially confound results, we sequenced 10 sets of dam and foal duos. We found variation between duos but none within duos, indicating that this method is feasible for future screening systems. Analysis of WGS data from over 100 Thoroughbred horses revealed wide variation in the mitochondria sequence within the breed, further displaying the utility of this approach.


Assuntos
Dopagem Esportivo , Edição de Genes , Animais , Sistemas CRISPR-Cas , Edição de Genes/métodos , Edição de Genes/veterinária , Cavalos/genética , Mitocôndrias/genética , Técnicas de Transferência Nuclear/veterinária
4.
Drug Test Anal ; 14(6): 1017-1025, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34994083

RESUMO

The misuse of gene therapy by the introduction of transgenes via plasmid or viral vectors as a doping agent is an increasing concern in human and animal sports, not only in consideration to fair competition but also in potential detrimental effects to welfare. Doping events can be detected by polymerase chain reaction (PCR) amplification of a transgene-specific region of DNA. Quantitative real-time PCR (qPCR) is particularly suited to confirmatory investigations where precise limits of detection can be calculated. To fully validate a qPCR experiment, it is highly desirable to confirm the identity of the amplicon. Although post-PCR techniques such as melt curve and fragment size analysis can provide strong evidence that the amplicon is as expected, sequence identity confirmation may be beneficial as part of regulatory proceedings. We present here our investigation into two alternative processes for the direct assessment of qPCR products for five genes using next-generation sequencing: ligation of sequence-ready adapters to qPCR products and qPCR assays performed with primers tailed with Illumina flow cell binding sites. To fully test the robustness of the techniques at concentrations required for gene doping detection, we also calculated a putative limit of detection for the assays. Both ligated adapters and tailed primers were successful in producing sequence data for the qPCR products without further amplification. Ligated adapters are preferred, however, as they do not require re-optimisation of existing qPCR assays.


Assuntos
Dopagem Esportivo , Animais , DNA , Primers do DNA , Cavalos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Transgenes
5.
Gene Ther ; 29(5): 236-246, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34276046

RESUMO

Throughout the history of horse racing, doping techniques to suppress or enhance performance have expanded to match the technology available. The next frontier in doping, both in the equine and human sports areas, is predicted to be genetic manipulation; either by prohibited use of genome editing, or gene therapy via transgenes. By using massively-parallel sequencing via a two-step PCR method we can screen for multiple doping targets at once in pooled primer sets. This method has the advantages of high scalability through combinational indexing, and the use of reference standards with altered sequences as controls. Custom software produces transgene-specific amplicons from any Ensembl-annotated genome to facilitate rapid assay design. Additional scripts batch-process FASTQ data from experiments, automatically quality-filtering sequences and assigning hits based on discriminatory motifs. We report here our experiences in establishing the workflow with an initial 31 transgene and vector feature targets. To evaluate the sensitivity of parallel sequencing in a real-world setting, we performed an intramuscular (IM) administration of a control rAAV vector into two horses and compared the detection sensitivity between parallel sequencing and real-time qPCR. Vector was detected by all assays on both methods up to 79 h post-administration, becoming sporadic after 96 h.


Assuntos
Dopagem Esportivo , Animais , Dopagem Esportivo/métodos , Terapia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Cavalos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Transgenes
7.
Methods ; 191: 78-86, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33096238

RESUMO

Genotyping of knockout alleles in mice is commonly performed by end-point PCR or gene-specific/universal cassette qPCR. Both have advantages and limitations in terms of assay design and interpretation of results. As an alternative method for high-throughput genotyping, we investigated next generation sequencing (NGS) of PCR amplicons, with a focus on CRISPR-mediated exon deletions where antibiotic selection markers are not present. By multiplexing the wild type and mutant-specific PCR reactions, the genotype can be called by the relative sequence counts of each product. The system is highly scalable and can be applied to a variety of different allele types, including those produced by the International Mouse Phenotyping Consortium and associated projects. One potential challenge with any assay design is locating unique areas of the genome, especially when working with gene families or regions of high homology. These can result in misleading or ambiguous genotypes for either qPCR or end-point assays. Here, we show that genotyping by NGS can negate these issues by simple, automated filtering of undesired sequences. Analysis and genotype calls can also be fully automated, using FASTQ or FASTA input files and an in-house Perl script and SQL database.


Assuntos
Técnicas de Genotipagem , Sequenciamento de Nucleotídeos em Larga Escala , Alelos , Animais , Genótipo , Camundongos , Camundongos Mutantes , Reação em Cadeia da Polimerase
8.
Nat Commun ; 11(1): 3588, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32680985

RESUMO

Tumors subvert immune cell function to evade immune responses, yet the complex mechanisms driving immune evasion remain poorly understood. Here we show that tumors induce de novo steroidogenesis in T lymphocytes to evade anti-tumor immunity. Using a transgenic steroidogenesis-reporter mouse line we identify and characterize de novo steroidogenic immune cells, defining the global gene expression identity of these steroid-producing immune cells and gene regulatory networks by using single-cell transcriptomics. Genetic ablation of T cell steroidogenesis restricts primary tumor growth and metastatic dissemination in mouse models. Steroidogenic T cells dysregulate anti-tumor immunity, and inhibition of the steroidogenesis pathway is sufficient to restore anti-tumor immunity. This study demonstrates T cell de novo steroidogenesis as a mechanism of anti-tumor immunosuppression and a potential druggable target.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Melanoma/imunologia , Esteroides/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular Tumoral , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/imunologia , Humanos , Evasão da Resposta Imune , Melanoma/genética , Melanoma/metabolismo , Camundongos , Camundongos Knockout , Esteroides/biossíntese
9.
Nat Commun ; 10(1): 2792, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31243271

RESUMO

The Deciphering the Mechanisms of Developmental Disorders programme has analysed the morphological and molecular phenotypes of embryonic and perinatal lethal mouse mutant lines in order to investigate the causes of embryonic lethality. Here we show that individual whole-embryo RNA-seq of 73 mouse mutant lines (>1000 transcriptomes) identifies transcriptional events underlying embryonic lethality and associates previously uncharacterised genes with specific pathways and tissues. For example, our data suggest that Hmgxb3 is involved in DNA-damage repair and cell-cycle regulation. Further, we separate embryonic delay signatures from mutant line-specific transcriptional changes by developing a baseline mRNA expression catalogue of wild-type mice during early embryogenesis (4-36 somites). Analysis of transcription outside coding sequence identifies deregulation of repetitive elements in Morc2a mutants and a gene involved in gene-specific splicing. Collectively, this work provides a large scale resource to further our understanding of early embryonic developmental disorders.


Assuntos
Embrião de Mamíferos/metabolismo , Análise de Sequência de RNA , Transcrição Gênica , Animais , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Mutação , Transcriptoma
10.
PLoS One ; 14(3): e0212481, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30840666

RESUMO

FBXO7 encodes an F box containing protein that interacts with multiple partners to facilitate numerous cellular processes and has a canonical role as part of an SCF E3 ubiquitin ligase complex. Mutation of FBXO7 is responsible for an early onset Parkinsonian pyramidal syndrome and genome-wide association studies have linked variants in FBXO7 to erythroid traits. A putative orthologue in Drosophila, nutcracker, has been shown to regulate the proteasome, and deficiency of nutcracker results in male infertility. Therefore, we reasoned that modulating Fbxo7 levels in a murine model could provide insights into the role of this protein in mammals. We used a targeted gene trap model which retained 4-16% residual gene expression and assessed the sensitivity of phenotypic traits to gene dosage. Fbxo7 hypomorphs showed regenerative anaemia associated with a shorter erythrocyte half-life, and male mice were infertile. Alterations to T cell phenotypes were also observed, which intriguingly were both T cell intrinsic and extrinsic. Hypomorphic mice were also sensitive to infection with Salmonella, succumbing to a normally sublethal challenge. Despite these phenotypes, Fbxo7 hypomorphs were produced at a normal Mendelian ratio with a normal lifespan and no evidence of neurological symptoms. These data suggest that erythrocyte survival, T cell development and spermatogenesis are particularly sensitive to Fbxo7 gene dosage.


Assuntos
Alelos , Proteínas F-Box , Dosagem de Genes , Regulação da Expressão Gênica , Infertilidade Masculina , Característica Quantitativa Herdável , Animais , Proteínas F-Box/biossíntese , Proteínas F-Box/genética , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Salmonella , Infecções por Salmonella/genética , Espermatogênese/genética
11.
PLoS Genet ; 15(2): e1007917, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30707697

RESUMO

Hbs1 has been established as a central component of the cell's translational quality control pathways in both yeast and prokaryotic models; however, the functional characteristics of its human ortholog (Hbs1L) have not been well-defined. We recently reported a novel human phenotype resulting from a mutation in the critical coding region of the HBS1L gene characterized by facial dysmorphism, severe growth restriction, axial hypotonia, global developmental delay and retinal pigmentary deposits. Here we further characterize downstream effects of the human HBS1L mutation. HBS1L has three transcripts in humans, and RT-PCR demonstrated reduced mRNA levels corresponding with transcripts V1 and V2 whereas V3 expression was unchanged. Western blot analyses revealed Hbs1L protein was absent in the patient cells. Additionally, polysome profiling revealed an abnormal aggregation of 80S monosomes in patient cells under baseline conditions. RNA and ribosomal sequencing demonstrated an increased translation efficiency of ribosomal RNA in Hbs1L-deficient fibroblasts, suggesting that there may be a compensatory increase in ribosome translation to accommodate the increased 80S monosome levels. This enhanced translation was accompanied by upregulation of mTOR and 4-EBP protein expression, suggesting an mTOR-dependent phenomenon. Furthermore, lack of Hbs1L caused depletion of Pelota protein in both patient cells and mouse tissues, while PELO mRNA levels were unaffected. Inhibition of proteasomal function partially restored Pelota expression in human Hbs1L-deficient cells. We also describe a mouse model harboring a knockdown mutation in the murine Hbs1l gene that shared several of the phenotypic elements observed in the Hbs1L-deficient human including facial dysmorphism, growth restriction and retinal deposits. The Hbs1lKO mice similarly demonstrate diminished Pelota levels that were rescued by proteasome inhibition.


Assuntos
Proteínas de Ligação ao GTP/genética , Mamíferos/genética , Proteínas dos Microfilamentos/genética , Monossomia/genética , Animais , Linhagem Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Fenótipo , Polirribossomos/genética , Complexo de Endopeptidases do Proteassoma/genética , RNA/genética , RNA Mensageiro/genética , Ribossomos/genética , Serina-Treonina Quinases TOR/genética , Regulação para Cima/genética
12.
PLoS Genet ; 14(7): e1007503, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29985941

RESUMO

CRISPR-Cas9 technologies have transformed genome-editing of experimental organisms and have immense therapeutic potential. Despite significant advances in our understanding of the CRISPR-Cas9 system, concerns remain over the potential for off-target effects. Recent studies have addressed these concerns using whole-genome sequencing (WGS) of gene-edited embryos or animals to search for de novo mutations (DNMs), which may represent candidate changes introduced by poor editing fidelity. Critically, these studies used strain-matched, but not pedigree-matched controls and thus were unable to reliably distinguish generational or colony-related differences from true DNMs. Here we used a trio design and whole genome sequenced 8 parents and 19 embryos, where 10 of the embryos were mutagenised with well-characterised gRNAs targeting the coat colour Tyrosinase (Tyr) locus. Detailed analyses of these whole genome data allowed us to conclude that if CRISPR mutagenesis were causing SNV or indel off-target mutations in treated embryos, then the number of these mutations is not statistically distinguishable from the background rate of DNMs occurring due to other processes.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Monofenol Mono-Oxigenase/genética , Mutagênese/genética , Sequenciamento Completo do Genoma/métodos , Animais , Variação Biológica da População/genética , Análise Mutacional de DNA/métodos , Feminino , Genoma/genética , Cor de Cabelo/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Linhagem , RNA Guia de Cinetoplastídeos/genética , Projetos de Pesquisa
13.
Nature ; 555(7697): 463-468, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29539633

RESUMO

Large-scale phenotyping efforts have demonstrated that approximately 25-30% of mouse gene knockouts cause intrauterine lethality. Analysis of these mutants has largely focused on the embryo and not the placenta, despite the crucial role of this extraembryonic organ for developmental progression. Here we screened 103 embryonic lethal and sub-viable mouse knockout lines from the Deciphering the Mechanisms of Developmental Disorders program for placental phenotypes. We found that 68% of knockout lines that are lethal at or after mid-gestation exhibited placental dysmorphologies. Early lethality (embryonic days 9.5-14.5) is almost always associated with severe placental malformations. Placental defects correlate strongly with abnormal brain, heart and vascular development. Analysis of mutant trophoblast stem cells and conditional knockouts suggests that a considerable number of factors that cause embryonic lethality when ablated have primary gene function in trophoblast cells. Our data highlight the hugely under-appreciated importance of placental defects in contributing to abnormal embryo development and suggest key molecular nodes that govern placenta formation.


Assuntos
Perda do Embrião/genética , Perda do Embrião/patologia , Mutação , Placenta/patologia , Placentação/genética , Animais , Feminino , Camundongos , Camundongos Knockout , Gravidez , Células-Tronco/metabolismo , Células-Tronco/patologia , Trofoblastos/metabolismo , Trofoblastos/patologia
15.
Nature ; 541(7636): 233-236, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-28052056

RESUMO

Metastasis is the leading cause of death for cancer patients. This multi-stage process requires tumour cells to survive in the circulation, extravasate at distant sites, then proliferate; it involves contributions from both the tumour cell and tumour microenvironment ('host', which includes stromal cells and the immune system). Studies suggest the early steps of the metastatic process are relatively efficient, with the post-extravasation regulation of tumour growth ('colonization') being critical in determining metastatic outcome. Here we show the results of screening 810 mutant mouse lines using an in vivo assay to identify microenvironmental regulators of metastatic colonization. We identify 23 genes that, when disrupted in mouse, modify the ability of tumour cells to establish metastatic foci, with 19 of these genes not previously demonstrated to play a role in host control of metastasis. The largest reduction in pulmonary metastasis was observed in sphingosine-1-phosphate (S1P) transporter spinster homologue 2 (Spns2)-deficient mice. We demonstrate a novel outcome of S1P-mediated regulation of lymphocyte trafficking, whereby deletion of Spns2, either globally or in a lymphatic endothelial-specific manner, creates a circulating lymphopenia and a higher percentage of effector T cells and natural killer (NK) cells present in the lung. This allows for potent tumour cell killing, and an overall decreased metastatic burden.


Assuntos
Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Genoma/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Animais , Proteínas de Transporte de Ânions/deficiência , Linhagem Celular Tumoral , Movimento Celular , Modelos Animais de Doenças , Feminino , Genômica , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Linfopenia/genética , Linfopenia/patologia , Lisofosfolipídeos/metabolismo , Masculino , Camundongos , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Microambiente Tumoral
16.
Nature ; 537(7621): 508-514, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27626380

RESUMO

Approximately one-third of all mammalian genes are essential for life. Phenotypes resulting from knockouts of these genes in mice have provided tremendous insight into gene function and congenital disorders. As part of the International Mouse Phenotyping Consortium effort to generate and phenotypically characterize 5,000 knockout mouse lines, here we identify 410 lethal genes during the production of the first 1,751 unique gene knockouts. Using a standardized phenotyping platform that incorporates high-resolution 3D imaging, we identify phenotypes at multiple time points for previously uncharacterized genes and additional phenotypes for genes with previously reported mutant phenotypes. Unexpectedly, our analysis reveals that incomplete penetrance and variable expressivity are common even on a defined genetic background. In addition, we show that human disease genes are enriched for essential genes, thus providing a dataset that facilitates the prioritization and validation of mutations identified in clinical sequencing efforts.


Assuntos
Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Genes Essenciais/genética , Genes Letais/genética , Mutação/genética , Fenótipo , Animais , Sequência Conservada/genética , Doença , Estudo de Associação Genômica Ampla , Ensaios de Triagem em Larga Escala , Humanos , Imageamento Tridimensional , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Penetrância , Polimorfismo de Nucleotídeo Único/genética , Homologia de Sequência
17.
Hum Mol Genet ; 25(2): 291-307, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26604141

RESUMO

Zinc finger motifs are distributed amongst many eukaryotic protein families, directing nucleic acid-protein and protein-protein interactions. Zinc finger protein 106 (ZFP106) has previously been associated with roles in immune response, muscle differentiation, testes development and DNA damage, although little is known about its specific function. To further investigate the function of ZFP106, we performed an in-depth characterization of Zfp106 deficient mice (Zfp106(-/-)), and we report a novel role for ZFP106 in motor and sensory neuronal maintenance and survival. Zfp106(-/-) mice develop severe motor abnormalities, major deficits in muscle strength and histopathological changes in muscle. Intriguingly, despite being highly expressed throughout the central nervous system, Zfp106(-/-) mice undergo selective motor and sensory neuronal and axonal degeneration specific to the spinal cord and peripheral nervous system. Neurodegeneration does not occur during development of Zfp106(-/-) mice, suggesting that ZFP106 is likely required for the maintenance of mature peripheral motor and sensory neurons. Analysis of embryonic Zfp106(-/-) motor neurons revealed deficits in mitochondrial function, with an inhibition of Complex I within the mitochondrial electron transport chain. Our results highlight a vital role for ZFP106 in sensory and motor neuron maintenance and reveal a novel player in mitochondrial dysfunction and neurodegeneration.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Neurônios Motores/metabolismo , Doenças Neurodegenerativas/genética , Células Receptoras Sensoriais/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Neurônios Motores/fisiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Células Receptoras Sensoriais/fisiologia
18.
Stem Cells Dev ; 24(16): 1865-77, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26125289

RESUMO

MYSM1 is a chromatin-interacting deubiquitinase recently shown to be essential for hematopoietic stem cell (HSC) function and normal progression of hematopoiesis in both mice and humans. However, it remains unknown whether the loss of function in Mysm1-deficient HSCs is due to the essential role of MYSM1 in establishing the HSC pool during development or due to a continuous requirement for MYSM1 in adult HSCs. In this study we, for the first time, address these questions first, by performing a detailed analysis of hematopoiesis in the fetal livers of Mysm1-knockout mice, and second, by assessing the effects of an inducible Mysm1 ablation on adult HSC functions. Our data indicate that MYSM1 is essential for normal HSC function and progression of hematopoiesis in the fetal liver. Furthermore, the inducible knockout model demonstrates a continuous requirement for MYSM1 to maintain HSC functions and antagonize p53 activation in adult bone marrow. These studies advance our understanding of the role of MYSM1 in HSC biology, and provide new insights into the human hematopoietic failure syndrome resulting from MYSM1 deficiency.


Assuntos
Endopeptidases/genética , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Fígado/citologia , Animais , Células Cultivadas , Endopeptidases/metabolismo , Células-Tronco Hematopoéticas/citologia , Fígado/embriologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transativadores , Proteases Específicas de Ubiquitina
19.
Transgenic Res ; 24(5): 921-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26178246

RESUMO

With the advent of modern developmental biology and molecular genetics, the scientific community has generated thousands of newly genetically altered strains of laboratory mice with the aim of elucidating gene function. To this end, a large group of Institutions which form the International Mouse Phenotyping Consortium is generating and phenotyping a knockout mouse strain for each of the ~20,000 protein-coding genes using the mutant ES cell resource produced by the International Knockout Mouse Consortium. These strains are made available to the research community via public repositories, mostly as cryopreserved sperm or embryos. To ensure the quality of this frozen resource there is a requirement that for each strain the frozen sperm/embryos are proven able to produce viable mutant progeny, before the live animal resource is removed from cages. Given the current requirement to generate live pups to demonstrate their mutant genotype, this quality control check necessitates the use and generation of many animals and requires considerable time, cage space, technical and economic resources. Here, we describe a simple and efficient method of genotyping pre-implantation stage blastocysts with significant ethical and economic advantages especially beneficial for current and future large-scale mouse mutagenesis projects.


Assuntos
Blastocisto/metabolismo , Genótipo , Controle de Qualidade , Animais , Camundongos
20.
PLoS One ; 9(3): e91807, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24642684

RESUMO

Homozygosity for Slc25a21(tm1a(KOMP)Wtsi) results in mice exhibiting orofacial abnormalities, alterations in carpal and rugae structures, hearing impairment and inflammation in the middle ear. In humans it has been hypothesised that the 2-oxoadipate mitochondrial carrier coded by SLC25A21 may be involved in the disease 2-oxoadipate acidaemia. Unexpectedly, no 2-oxoadipate acidaemia-like symptoms were observed in animals homozygous for Slc25a21(tm1a(KOMP)Wtsi) despite confirmation that this allele reduces Slc25a21 expression by 71.3%. To study the complete knockout, an allelic series was generated using the loxP and FRT sites typical of a Knockout Mouse Project allele. After removal of the critical exon and neomycin selection cassette, Slc25a21 knockout mice homozygous for the Slc25a21(tm1b(KOMP)Wtsi) and Slc25a21(tm1d(KOMP)Wtsi) alleles were phenotypically indistinguishable from wild-type. This led us to explore the genomic environment of Slc25a21 and to discover that expression of Pax9, located 3' of the target gene, was reduced in homozygous Slc25a21(tm1a(KOMP)Wtsi) mice. We hypothesize that the presence of the selection cassette is the cause of the down regulation of Pax9 observed. The phenotypes we observed in homozygous Slc25a21(tm1a(KOMP)Wtsi) mice were broadly consistent with a hypomorphic Pax9 allele with the exception of otitis media and hearing impairment which may be a novel consequence of Pax9 down regulation. We explore the ramifications associated with this particular targeted mutation and emphasise the need to interpret phenotypes taking into consideration all potential underlying genetic mechanisms.


Assuntos
Transportadores de Ácidos Dicarboxílicos/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Anormalidades da Boca/genética , Otite Média/genética , Fatores de Transcrição Box Pareados/genética , Alelos , Animais , Transportadores de Ácidos Dicarboxílicos/deficiência , Éxons , Feminino , Regulação da Expressão Gênica , Engenharia Genética , Homozigoto , Humanos , Masculino , Proteínas de Membrana Transportadoras/deficiência , Camundongos , Camundongos Knockout , Proteínas de Transporte da Membrana Mitocondrial/deficiência , Anormalidades da Boca/patologia , Mutação , Otite Média/patologia , Fator de Transcrição PAX9 , Fatores de Transcrição Box Pareados/deficiência , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...