Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39063695

RESUMO

Metal products for the metallurgical and machinery industries must meet high requirements in terms of their performance, including reliability, accuracy, durability and fatigue strength. It is also important that materials commonly used to manufacture such products must meet specific requirements. Therefore, various techniques and technologies for modifying the surface layer are becoming more and more widely used. These include burnishing, which may be dynamic or static. This article studies the process of slide burnishing of surfaces of cylindrical objects. The burnishing was performed using a slide burnisher with a rigid diamond-tipped clamp on a general-purpose lathe. The tests were performed for corrosion-resistant steel X2CrNiMo17-12-2. The aim of the research was to determine the impact of changes in burnishing conditions and parameters-feed rate, burnisher depth and burnishing force at a constant burnishing speed-on the surface roughness and hardness. Additionally, the microstructure was assessed in the critical areas: the surface and the core. Another phenomenon observed was surface cracking, which would be destructive due to the occurrence of indentation. In the paper, it was stated that the microstructure, or rather the grains, in the area of the surface layer was oriented in the direction of deformation. It was also observed that in the area of the surface layer, no cracks or other flaws were revealed. Therefore, slide burnishing not only reduces the surface roughness but hardens the surface layer of the burnished material.

2.
Materials (Basel) ; 17(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38673271

RESUMO

Duplex steel and cast steels have a wide range of applications in many industrial sectors, for example, oil extraction, printing, petrochemical industry, energy-exhaust gases desulphurization systems, seawater desalination plants, and the shipbuilding industry. The machine elements can be produced with different techniques, which determine the operational properties. A material with the same chemical composition made as a casting will have worse mechanical properties than, for example, a forged element. This depends on the microstructure, its fragmentation and its morphology. However, the costs of casting are lower than, for example, forging, and, in addition, not all shapes obtainable in the casting process can be made using metal-plastic working methods. This article presents research results concerning the influence of the burnishing process on the properties of the duplex cast steel surface layer. The purpose of the research was to verify the impact of static pressure roller burnishing (SPRB) parameters on the wear of the surface layer of duplex cast steel. The subject of the research was cast steel in the GX2CrNiMoN22-5-3 grade-according to PN-EN 10283:2019-that was burnished using 15 variants of technological parameters. Then, the samples were subjected to surface wear tests using the INSTRON 8874 device. On the basis of the observed wear appearances, the acting wear mechanisms are defined and evaluated according their contribution to the wear behavior. Detailed information about the wear phenomena will help industries to minimize their maintenance losses related to surface wear. The possibility of shaping surface properties by mechanical burnishing is part of the current direction of surface engineering development. This technology, combined with a high-potential material such as duplex cast steel, makes it possible to increase wear resistance.

3.
Materials (Basel) ; 15(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35329465

RESUMO

This paper presents the results of research on the determination of the influence of kinetic asymmetry of work rolls on structural changes in hot-rolled bimetallic sheet metals. The tests were conducted on bimetallic samples composed of materials 10CrMo9-10 + X2CrNiMo17-12-2. The scope of the research included a comparative analysis for two cooling variants: I in water (freezing the structure immediately after rolling) and II for cooling in air. The research conducted showed that the introduction of asymmetric conditions to the rolling process results in a greater grain fragmentation in the so-called hard layer and does not have a negative effect on microstructural changes in the soft layer.

4.
Materials (Basel) ; 14(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885479

RESUMO

WC-Co (tungsten carbide-cobalt) composites are widely used in industry, wear-resistant parts, and cutting tools. As successful tool materials, WC-Co carbides are widely applied in metal cutting, wear applications, chipless forming, stoneworking, wood, and plastic working. These materials are exposed to severe solid particle erosion by sand particles, such as in the wood industry. During the production of furniture with HDF (High Density Fibreboard), MDF (Medium Density Fibreboard), or OSB (Oriented Strand Board), there are observed problems with tool erosion. Contamination, mainly of the HDF by sand, is quite often, which is why all tools used for the machining of such materials are exposed to erosion by sand particles. Although many studies have been performed on the erosion of various metals, and erosion models exist to predict their erosion behavior, the issue is still relevant. The aim of the study was to determine the effect of grain size (submicron, ultrafine) and the manufacturing technology (SPS-Spark Plasma Sintering, conventional) used on the erosive properties of WC-Co sintered carbides. Sinters produced by the SPS method with different sizes of WC grains and commercial samples were used for the tests. Ten two-hour cycles were carried out under medium conditions of quartz sand and quartz sand with 10% SiC added. Used samples were characterised using scanning electron microscopy (SEM) and roughness was determined. Furthermore, erosion studies allowed individuating a wear mechanism as well as the possibility to foresee cutting performance in prospective application.

5.
Materials (Basel) ; 14(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34832490

RESUMO

The influence of dynamic loads resulting from human motor activity and electrocorrosion inside the human body on the strength parameters of artificial joint elements has not yet been investigated. Hip joint arthroplasty is the most common surgical procedure in the world that allows doctors to remove pain and restore motor skills in people with severe hip diseases, after accidents, and in the elderly. Based on the reports, this article assesses changes in the number of implanted endoprostheses in the years 2005-2019 and determines the trends and estimated changes in the number of implanted hip prostheses in the following decades. The study assesses changes in selected strength parameters of UHMW-PE polyethylene inserts of hip joint endoprostheses during their use in the human body. The research was carried out on appropriately collected samples from UHMW-PE cups removed from the human body with a known history and lifetime from 4 to 10 years. Patients' body weight ranged from 735 [N] to 820 [N], and the declared physical activity was similar in the entire research group. As part of the research, the values of changes in dynamic modules and the mechanical loss coefficient were determined in relation to the share of the crystalline and amorphous phases of artificial UHMW-PE cups, removed from the human body after different periods of exploitation under similar operating conditions. The analysis of selected strength parameters was performed at a temperature of 40 °C, which corresponds to the working conditions inside the human body. On the basis of numerical studies, the influence of changes in material parameters on the deformation of the artificial acetabulum during the patient's motor activity, which is one of the causes of fatigue destruction, was determined.

6.
Materials (Basel) ; 13(14)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708641

RESUMO

In the machine, metallurgical, and shipbuilding industries, steel products with alloy and composite coatings based on nickel may be used. It is expedient to improve the physicochemical properties of the surface layer of products as they have a significant roughness value after thermal spraying. It is therefore important to finish the layers applied by flame spraying, where machining is used for this purpose. However, it causes a loss of coating material, which is quite expensive. Therefore, in order to reduce costs and improve the quality of the surface layer, the finishing treatment of nickel-based coatings by means of plastic working is used. Two types of plastic working were proposed: rolling and burnishing. Numerical and experimental tests of the plastic processing of alloy coatings were carried out. The roughness of the coatings after rolling decreased to 1/25 and 30% strengthening of the alloy coating matrix was determined. After burnishing, roughness was reduced to 1/12 and the alloy coatings were strengthened by 25%. Plastic working by rolling and burnishing has a beneficial effect on the surface quality of the workpiece, not only by significantly improving the roughness, but also by increasing the strength properties of the surface layers.

7.
Materials (Basel) ; 13(12)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545611

RESUMO

The article assesses the strength and structural parameters of load-bearing layers of metal biobearings made of CoCrMo alloy. The research material consisted of unicompartmental knee joint endoprostheses used in the human body, removed due to excessive wear. No patient participated in the examinations. The endoprostheses used as research material underwent the liquidation procedures in the hospital, which has all necessary permissions and certifications to perform endoprosthetic procedures. Endoprostheses selected for the examinations had been used for 6 to 12 years at similar load conditions as declared by the patients, i.e., body weight of F = 835 N, declared activity expressed as the number of load cycles up to 100 thousand/year, and no artificial joint infections. To assess the homogeneity of the research material, the analysis of chemical composition using a Joel scanning electron microscope with EDS (Energy-dispersive X-ray spectroscopy) was made to exclude endoprostheses with various alloying additives. Microscopic examinations were performed using the Phenom XL microscope, while the wear surface was examined using a Keyence VHX-900F microscope. Several experimental tests were also carried out on load-bearing surfaces to assess changes in strength parameters of the base material after a known life cycle and load conditions. Material hardness using the Vickers method, yield point, critical value of stress intensity coefficient, and the coefficient of friction µ were evaluated. The examinations allowed for the systematization of wear in the knee and femoral components of unicompartmental hip endoprostheses. The statistical evaluation of the number and costs of hip joint replacement surgeries in Poland was also made.

8.
Materials (Basel) ; 13(10)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466145

RESUMO

Drawability tests of metal sheets are known and used as technological processes that allow assessing possibilities of plastic forming. One such test is the cupping test, which is very useful for examining thin sheets of both uniform and multilayer materials. In this work, a comprehensive analysis of the shaping of the bimetallic product Al-Cu (Al-1050 + Cu-M1E) was carried out. The research covers the entire production cycle, from explosive-welding, through asymmetric rolling (ASR) to deep drawing. The scientific and cognitive aspect of the work is to determine the potential of plastic-forming processes without the need for interoperational heat treatments. Tests were carried out for two variants of bimetals used in tools: matrix-Al-1050 + Cu-M1E and matrix-Cu-M1E + Al-1050.

9.
Materials (Basel) ; 13(7)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260201

RESUMO

The paper presents an experimental study on microstructure changes in duplex steel after hot deformation. Duplex steels and cast steels are characterized by a multiphase microstructure. They are relatively new materials with great contributions to the many fields of industries. Due to the fact of deforming two different phase austenite and ferrite those materials have a complex plasticity. This work is a continuation and complementation of previous works and is a significant supplement to information presented in them. The article concerns precipitation phenomena and changes in the microstructure of two grades of ferritic-austenitic steels: X2CrNiMoN25-7-4 and X2CrNiMoCuN25-6-3. Those steels have a very similar chemical composition, differing by only 2.5% copper content. An important aspect presented in the work is we observed that adding 2.5% copper prevented precipitation of the destructive sigma phase during the hot deformation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA