Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Ann Rev Mar Sci ; 15: 303-328, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-35850490

RESUMO

The world's eastern boundary upwelling systems (EBUSs) contribute disproportionately to global ocean productivity and provide critical ecosystem services to human society. The impact of climate change on EBUSs and the ecosystems they support is thus a subject of considerable interest. Here, we review hypotheses of climate-driven change in the physics, biogeochemistry, and ecology of EBUSs; describe observed changes over recent decades; and present projected changes over the twenty-first century. Similarities in historical and projected change among EBUSs include a trend toward upwelling intensification in poleward regions, mitigatedwarming in near-coastal regions where upwelling intensifies, and enhanced water-column stratification and a shoaling mixed layer. However, there remains significant uncertainty in how EBUSs will evolve with climate change, particularly in how the sometimes competing changes in upwelling intensity, source-water chemistry, and stratification will affect productivity and ecosystem structure. We summarize the commonalities and differences in historical and projected change in EBUSs and conclude with an assessment of key remaining uncertainties and questions. Future studies will need to address these questions to better understand, project, and adapt to climate-driven changes in EBUSs.


Assuntos
Mudança Climática , Ecossistema , Humanos , Ecologia , Adaptação Fisiológica , Água
3.
Nat Commun ; 13(1): 5298, 2022 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-36244978

RESUMO

Massive populations of sardines inhabit both the western and eastern boundaries of the world's subtropical ocean basins, supporting both commercial fisheries and populations of marine predators. Sardine populations in western and eastern boundary current systems have responded oppositely to decadal scale anomalies in ocean temperature, but the mechanism for differing variability has remained unclear. Here, based on otolith microstructure and high-resolution stable isotope analyses, we show that habitat temperature, early life growth rates, energy expenditure, metabolically optimal temperature, and, most importantly, the relationship between growth rate and temperature are remarkably different between the two subpopulations in the western and eastern North Pacific. Varying metabolic responses to environmental changes partly explain the contrasting growth responses. Consistent differences in the life-history traits are observed between subpopulations in the western and eastern boundary current systems around South Africa. These growth and survival characteristics can facilitate the contrasting responses of sardine populations to climate change.


Assuntos
Mudança Climática , Peixes , Animais , Ecossistema , Pesqueiros , Peixes/fisiologia , Oceano Pacífico , Temperatura
4.
Sci Adv ; 8(18): eabm3468, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35522743

RESUMO

Ocean memory, the persistence of ocean conditions, is a major source of predictability in the climate system beyond weather time scales. We show that ocean memory, as measured by the year-to-year persistence of sea surface temperature anomalies, is projected to steadily decline in the coming decades over much of the globe. This global decline in ocean memory is predominantly driven by shoaling of the upper-ocean mixed layer depth in response to global surface warming, while thermodynamic and dynamic feedbacks can contribute substantially regionally. As the mixed layer depth shoals, stochastic forcing becomes more effective in driving sea surface temperature anomalies, increasing high-frequency noise at the expense of persistent signals. Reduced ocean memory results in shorter lead times of skillful persistence-based predictions of sea surface thermal conditions, which may present previously unknown challenges for predicting climate extremes and managing marine biological resources under climate change.

5.
Commun Biol ; 5(1): 28, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017642

RESUMO

Marine fish populations commonly exhibit low-frequency fluctuations in biomass that can cause catch volatility and thus endanger the food and economic security of dependent coastal societies. Such variability has been linked to fishing intensity, demographic processes and environmental variability, but our understanding of the underlying drivers remains poor for most fish stocks. Our study departs from previous findings showing that sea surface temperature (SST) is a significant driver of fish somatic growth variability and that life-history characteristics mediate population-level responses to environmental variability. We use autoregressive models to simulate how fish populations integrate SST variability over multiple years depending on fish life span and trophic position. We find that simulated SST-driven population dynamics can explain a significant portion of observed low-frequency variability in independent observations of fisheries landings around the globe. Predictive skill, however, decreases with increasing fishing pressure, likely due to demographic truncation. Using our modelling approach, we also show that increases in the mean and variance of SST could amplify biomass volatility and lessen its predictability in the future. Overall, biological integration of high-frequency SST variability represents a null hypothesis with which to explore the drivers of low-frequency population change across upper-trophic marine species.


Assuntos
Biomassa , Peixes/fisiologia , Dinâmica Populacional , Temperatura , Animais , Pesqueiros , Modelos Biológicos , Oceanos e Mares
6.
Trends Ecol Evol ; 36(1): 76-86, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33097289

RESUMO

Transfer efficiency is the proportion of energy passed between nodes in food webs. It is an emergent, unitless property that is difficult to measure, and responds dynamically to environmental and ecosystem changes. Because the consequences of changes in transfer efficiency compound through ecosystems, slight variations can have large effects on food availability for top predators. Here, we review the processes controlling transfer efficiency, approaches to estimate it, and known variations across ocean biomes. Both process-level analysis and observed macroscale variations suggest that ecosystem-scale transfer efficiency is highly variable, impacted by fishing, and will decline with climate change. It is important that we more fully resolve the processes controlling transfer efficiency in models to effectively anticipate changes in marine ecosystems and fisheries resources.


Assuntos
Ecossistema , Cadeia Alimentar , Mudança Climática , Pesqueiros
7.
Ecology ; 100(8): e02760, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31127608

RESUMO

Common approaches for summarizing multivariate environmental or community data assume that relationships among variables are stationary over time, and this assumption is often not tested. Here we test the hypothesis that relationships among environmental and community time series are nonstationary in the Gulf of Alaska ecosystem (North Pacific Ocean) over multidecadal time scales. Dynamic factor analysis (DFA) is applied to environmental and community data from before and after 1988/1989, corresponding to the timing of an abrupt decline in temporal variance of the Aleutian Low atmospheric pattern, a leading driver of Gulf of Alaska climate. Results show that covariance among local atmosphere and ocean environmental variables weakened simultaneous to the decline in Aleutian Low variance. At the same time, community-wide responses of 14 fish and crustacean populations to physical forcing weakened, as indicated by nonstationary environment-biology regression coefficients. In line with theoretical predictions, this loss of a shared response to environmental variability was accompanied by weakening community covariance. Individual populations also showed nonstationary relationships with shared trends of community variability. We conclude that assumptions of fixed environmental and community relationships are likely to produce mistaken inference in this ecosystem. Similar concerns may apply in other ecosystems subject to changing climate patterns.


Assuntos
Mudança Climática , Ecossistema , Alaska , Animais , Clima , Oceano Pacífico
8.
Proc Biol Sci ; 285(1890)2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30404879

RESUMO

Studies of climate effects on ecology often account for non-stationarity in individual physical and biological variables, but rarely allow for non-stationary relationships among variables. Here, we show that non-stationary relationships among physical and biological variables are central to understanding climate effects on salmon (Onchorynchus spp.) in the Gulf of Alaska during 1965-2012. The relative importance of two leading patterns in North Pacific climate, the Pacific Decadal Oscillation (PDO) and North Pacific Gyre Oscillation (NPGO), changed around 1988/1989 as reflected by changing correlations with leading axes of sea surface temperature variability. Simultaneously, relationships between the PDO and Gulf of Alaska environmental variables weakened, and long-standing temperature-salmon and PDO-salmon covariance declined to zero. We propose a mechanistic explanation for changing climate-salmon relationships in terms of non-stationary atmosphere-ocean interactions coinciding with changing PDO-NPGO relative importance. We also show that regression models assuming stationary climate-salmon relationships are inappropriate over the multidecadal time scale we consider. Relaxing assumptions of stationary relationships markedly improved modelling of climate effects on salmon catches and productivity. Attempts to understand the implications of changing climate patterns in other ecosystems might also be aided by the application of models that allow associations among environmental and biological variables to change over time.


Assuntos
Mudança Climática , Clima , Pesqueiros , Salmão/fisiologia , Alaska , Animais , Modelos Teóricos , Oceano Pacífico , Dinâmica Populacional , Análise de Regressão , Estações do Ano , Especificidade da Espécie
9.
Glob Chang Biol ; 24(6): 2305-2314, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29575413

RESUMO

Along the western margin of North America, the winter expression of the North Pacific High (NPH) strongly influences interannual variability in coastal upwelling, storm track position, precipitation, and river discharge. Coherence among these factors induces covariance among physical and biological processes across adjacent marine and terrestrial ecosystems. Here, we show that over the past century the degree and spatial extent of this covariance (synchrony) has substantially increased, and is coincident with rising variance in the winter NPH. Furthermore, centuries-long blue oak (Quercus douglasii) growth chronologies sensitive to the winter NPH provide robust evidence that modern levels of synchrony are among the highest observed in the context of the last 250 years. These trends may ultimately be linked to changing impacts of the El Niño Southern Oscillation on midlatitude ecosystems of North America. Such a rise in synchrony may destabilize ecosystems, expose populations to higher risks of extinction, and is thus a concern given the broad biological relevance of winter climate to biological systems.


Assuntos
Mudança Climática , Ecossistema , El Niño Oscilação Sul , Monitoramento Ambiental , Rios , Estações do Ano , Estados Unidos
10.
Proc Natl Acad Sci U S A ; 114(8): E1441-E1449, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28115722

RESUMO

Photosynthesis fuels marine food webs, yet differences in fish catch across globally distributed marine ecosystems far exceed differences in net primary production (NPP). We consider the hypothesis that ecosystem-level variations in pelagic and benthic energy flows from phytoplankton to fish, trophic transfer efficiencies, and fishing effort can quantitatively reconcile this contrast in an energetically consistent manner. To test this hypothesis, we enlist global fish catch data that include previously neglected contributions from small-scale fisheries, a synthesis of global fishing effort, and plankton food web energy flux estimates from a prototype high-resolution global earth system model (ESM). After removing a small number of lightly fished ecosystems, stark interregional differences in fish catch per unit area can be explained (r = 0.79) with an energy-based model that (i) considers dynamic interregional differences in benthic and pelagic energy pathways connecting phytoplankton and fish, (ii) depresses trophic transfer efficiencies in the tropics and, less critically, (iii) associates elevated trophic transfer efficiencies with benthic-predominant systems. Model catch estimates are generally within a factor of 2 of values spanning two orders of magnitude. Climate change projections show that the same macroecological patterns explaining dramatic regional catch differences in the contemporary ocean amplify catch trends, producing changes that may exceed 50% in some regions by the end of the 21st century under high-emissions scenarios. Models failing to resolve these trophodynamic patterns may significantly underestimate regional fisheries catch trends and hinder adaptation to climate change.


Assuntos
Pesqueiros/estatística & dados numéricos , Adaptação Fisiológica/fisiologia , Animais , Mudança Climática/estatística & dados numéricos , Ecossistema , Peixes/fisiologia , Cadeia Alimentar , Modelos Biológicos , Oceanos e Mares , Plâncton/fisiologia
11.
Ann Rev Mar Sci ; 9: 469-493, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28045355

RESUMO

Anchovy and sardine populated productive ocean regions over hundreds of thousands of years under a naturally varying climate, and are now subject to climate change of equal or greater magnitude occurring over decades to centuries. We hypothesize that anchovy and sardine populations are limited in size by the supply of nitrogen from outside their habitats originating from upwelling, mixing, and rivers. Projections of the responses of anchovy and sardine to climate change rely on a range of model types and consideration of the effects of climate on lower trophic levels, the effects of fishing on higher trophic levels, and the traits of these two types of fish. Distribution, phenology, nutrient supply, plankton composition and production, habitat compression, fishing, and acclimation and adaptation may be affected by ocean warming, acidification, deoxygenation, and altered hydrology. Observations of populations and evaluation of model skill are essential to resolve the effects of climate change on these fish.


Assuntos
Mudança Climática , Ecossistema , Peixes , Animais , Clima , Rios
12.
Glob Chang Biol ; 21(12): 4401-14, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26220498

RESUMO

The zooplankton of the northern California Current are typically characterized by an abundance of lipid-rich copepods that support rapid growth and survival of ecologically, commercially, and recreationally valued fish, birds, and mammals. Disruption of this food chain and reduced ecosystem productivity are often associated with climatic variability such as El Niño events. We examined the variability in timing, magnitude, and duration of positive temperature anomalies and changes in copepod species composition in the northern California Current in relation to 10 tropical El Niño events. Measurable impacts on mesozooplankton of the northern California Current were observed during seven of 10 of these events. The occurrence of anomalously warm water and the response of the copepod community was rapid (lag of zero to 2 months) following the initiation of canonical Eastern Pacific (EP) events, but delayed (lag of 2-8 months) following 'Modoki' Central Pacific (CP) events. The variable lags in the timing of a physical and biological response led to impacts in the northern California Current peaking in winter during EP events and in the spring during CP events. The magnitude and duration of the temperature and copepod anomalies were strongly and positively related to the magnitude and duration of El Niño events, but were also sensitive to the phase of the lower frequency Pacific Decadal Oscillation. When fisheries managers and biological oceanographers are faced with the prospect of a future El Niño event, prudent management and observation will require consideration of the background oceanographic conditions, the type of event, and both the magnitude and duration of the event when assessing the potential physical and biological impacts on the northern California Current.


Assuntos
Biodiversidade , Copépodes/fisiologia , El Niño Oscilação Sul , Cadeia Alimentar , Animais , California , Temperatura Alta , Oceano Pacífico , Estações do Ano , Zooplâncton/fisiologia
13.
Science ; 345(6203): 1498-502, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25237100

RESUMO

Reported trends in the mean and variability of coastal upwelling in eastern boundary currents have raised concerns about the future of these highly productive and biodiverse marine ecosystems. However, the instrumental records on which these estimates are based are insufficiently long to determine whether such trends exceed preindustrial limits. In the California Current, a 576-year reconstruction of climate variables associated with winter upwelling indicates that variability increased over the latter 20th century to levels equaled only twice during the past 600 years. This modern trend in variance may be unique, because it appears to be driven by an unprecedented succession of extreme, downwelling-favorable, winter climate conditions that profoundly reduce productivity for marine predators of commercial and conservation interest.


Assuntos
Organismos Aquáticos , Ecossistema , Oceanos e Mares , Animais , Biodiversidade , Mudança Climática , Cadeia Alimentar , Estações do Ano
15.
Proc Natl Acad Sci U S A ; 105(6): 1965-70, 2008 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-18250305

RESUMO

Upwelling of nutrient-rich, subsurface water sustains high productivity in the ocean's eastern boundary currents. These ecosystems support a rate of fish harvest nearly 100 times the global mean and account for >20% of the world's marine fish catch. Environmental variability is thought to be the major cause of the decadal-scale biomass fluctuations characteristic of fish populations in these regions, but the mechanisms relating atmospheric physics to fish production remain unexplained. Two atmospheric conditions induce different types of upwelling in these ecosystems: coastal, alongshore wind stress, resulting in rapid upwelling (with high vertical velocity, w); and wind-stress curl, resulting in slower upwelling (low w). We show that the level of wind-stress curl has increased and that production of Pacific sardine (Sardinops sagax) varies with wind-stress curl over the past six decades. The extent of isopycnal shoaling, nutricline depth, and chlorophyll concentration in the upper ocean also correlate positively with wind-stress curl. The size structure of plankton assemblages is related to the rate of wind-forced upwelling, and sardine feed efficiently on small plankters generated by slow upwelling. Upwelling rate is a fundamental determinant of the biological structure and production in coastal pelagic ecosystems, and future changes in the magnitude and spatial gradient of wind stress may have important and differing effects on these ecosystems. Understanding of the biological mechanisms relating fisheries production to environmental variability is essential for wise management of marine resources under a changing climate.


Assuntos
Ecossistema , Vento , Animais , Peixes , Biologia Marinha , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...