Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9500, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664442

RESUMO

Conventional assumptions about multiphase flow in gas condensate reservoirs often do not correlate with field production. This discrepancy stems from the various mechanisms influencing the multiphase process, which are inadequately represented in numerical models. One of the least understood mechanisms is the influence of the non-equilibrium thermodynamics on the flow in the wellbore region, where the reservoir pressure is below the dew point pressure. To address this problem, experimental and mathematical analyses were conducted using a microfluidic device designed to replicate the flow dynamics in a gas condensate system. The experimental results showed an 11% deviation from the initial pressure of condensate saturation when compared with the conventional assumption of local equilibrium in numerical models. Similarly, there is a 14% deviation between the experimental and simulated volumes of the condensate. These findings underscore the inadequacy of existing models to accurately predict the saturation profile of the condensate phase. A mathematical model based on a relaxation parameter was applied to account for non-equilibrium phase separation and the fog state of the aerosol as observed in the microfluidic experiment. Incorporating a relaxation parameter ( τ ) enhanced the accuracy of the prediction of the initial pressure of the condensate saturation and an improvement in the prediction of the condensate volumes from 76% to 97.2%. Consequently, it provides a valuable framework and insight on the non-equilibrium phase behavior of gas condensate systems under constant flow regimes.

2.
Adv Mater ; 35(5): e2204474, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36398715

RESUMO

Pyrolyzed Fe-N-C materials have attracted considerable interest as one of the most active noble-metal-free electrocatalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). Despite significant progress is made in improving their catalytic activity during past decades, the Fe-N-C catalysts still suffer from fairly poor electrochemical and storage stability, which greatly hurdles their practical application. Here, an effective strategy is developed to greatly improve their catalytic stability in PEMFCs and storage stability by virtue of previously unexplored high-temperature synthetic chemistry between 1100 and 1200 °C. Pyrolysis at this rarely adopted temperature range not only enables the elimination of less active nitrogen-doped carbon sites that generate detrimental peroxide byproduct but also regulates the coordination structure of Fe-N-C from less stable D1 (O-FeN4 C12 ) to a more stable D2 structure (FeN4 C10 ). The optimized Fe-N-C catalyst exhibits excellent stability in PEMFCs (>80% performance retention after 30 h under H2 /O2 condition) and no activity loss after 35 day storage while maintaining a competitive ORR activity and PEMFC performance.

3.
Mol Ecol ; 24(24): 6041-60, 2015 12.
Artigo em Inglês | MEDLINE | ID: mdl-26769404

RESUMO

High-resolution, male-inherited Y-chromosomal markers are a useful tool for population genetic analyses of wildlife species, but to date have only been applied in this context to relatively few species besides humans. Using nine Y-chromosomal STRs and three Y-chromosomal single nucleotide polymorphism markers (Y-SNPs), we studied whether male gene flow was important for the recent recovery of the brown bear (Ursus arctos) in Northern Europe, where the species declined dramatically in numbers and geographical distribution during the last centuries but is expanding now. We found 36 haplotypes in 443 male extant brown bears from Sweden, Norway, Finland and northwestern Russia. In 14 individuals from southern Norway from 1780 to 1920, we found two Y chromosome haplotypes present in the extant population as well as four Y chromosome haplotypes not present among the modern samples. Our results suggested major differences in genetic connectivity, diversity and structure between the eastern and the western populations in Northern Europe. In the west, our results indicated that the recovered population originated from only four male lineages, displaying pronounced spatial structuring suggestive of large-scale population size increase under limited male gene flow within the western subpopulation. In the east, we found a contrasting pattern, with high haplotype diversity and admixture. This first population genetic analysis of male brown bears shows conclusively that male gene flow was not the main force of population recovery.


Assuntos
Fluxo Gênico , Genética Populacional , Ursidae/genética , Cromossomo Y/genética , Distribuição Animal , Animais , Finlândia , Haplótipos , Noruega , Polimorfismo de Nucleotídeo Único , Federação Russa , Suécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...