Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 40(41): 7795-7810, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32878902

RESUMO

Mammalian taste buds are comprised of specialized neuroepithelial cells that act as sensors for molecules that provide nutrition (e.g., carbohydrates, amino acids, and salts) and those that are potentially harmful (e.g., certain plant compounds and strong acids). Type II and III taste bud cells (TBCs) detect molecules described by humans as "sweet," "bitter," "umami," and "sour." TBCs that detect metallic ions, described by humans as "salty," are undefined. Historically, type I glial-like TBCs have been thought to play a supportive role in the taste bud, but little research has been done to explore their role in taste transduction. Some evidence implies that type I cells may detect sodium (Na+) via an amiloride-sensitive mechanism, suggesting they play a role in Na+ taste transduction. We used an optogenetic approach to study type I TBCs by driving the expression of the light-sensitive channelrhodopsin-2 (ChR2) in type I GAD65+ TBCs of male and female mice. Optogenetic stimulation of GAD65+ TBCs increased chorda tympani nerve activity and activated gustatory neurons in the rostral nucleus tractus solitarius. "N neurons," whose NaCl responses were blocked by the amiloride analog benzamil, responded robustly to light stimulation of GAD65+ TBCs on the anterior tongue. Two-bottle preference tests were conducted under Na+-replete and Na+-deplete conditions to assess the behavioral impact of optogenetic stimulation of GAD65+ TBCs. Under Na+-deplete conditions GAD65-ChR2-EYFP mice displayed a robust preference for H2O illuminated with 470 nm light versus nonilluminated H2O, suggesting that type I glial-like TBCs are sufficient for driving a behavior that resembles Na+ appetite.SIGNIFICANCE STATEMENT This is the first investigation on the role of type I GAD65+ taste bud cells (TBCs) in taste-mediated physiology and behavior via optogenetics. It details the first definitive evidence that selective optogenetic stimulation of glial-like GAD65+ TBCs evokes neural activity and modulates behavior. Optogenetic stimulation of GAD65+ TBCs on the anterior tongue had the strongest effect on gustatory neurons that responded best to NaCl stimulation through a benzamil-sensitive mechanism. Na+-depleted mice showed robust preferences to "light taste" (H2O illuminated with 470 nm light vs nonilluminated H2O), suggesting that the activation of GAD65+ cells may generate a salt-taste sensation in the brain. Together, our results shed new light on the role of GAD65+ TBCs in gustatory transduction and taste-mediated behavior.


Assuntos
Apetite/fisiologia , Preferências Alimentares/fisiologia , Glutamato Descarboxilase/fisiologia , Optogenética/métodos , Células Receptoras Sensoriais/fisiologia , Sódio/deficiência , Papilas Gustativas/fisiologia , Amilorida/farmacologia , Animais , Apetite/efeitos dos fármacos , Channelrhodopsins , Nervos Cranianos/fisiologia , Diuréticos/farmacologia , Feminino , Preferências Alimentares/efeitos dos fármacos , Glutamato Descarboxilase/efeitos dos fármacos , Masculino , Camundongos , Células Receptoras Sensoriais/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Papilas Gustativas/efeitos dos fármacos
2.
Chem Senses ; 43(2): 117-128, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29236959

RESUMO

Sensory processing is susceptible to decline with age. The sense of taste is, however, generally thought to be resistant to aging. We investigated how chorda-tympani nerve responses and fungiform-taste pores are affected by aging in the Sprague-Dawley rat, a model system for salt taste. First, we measured chorda-tympani nerve responses to NH4Cl and NaCl solutions in young (3-5 months old) and aged (14-15 months old) rats. Aged rats had significantly attenuated chorda-tympani responses to 0.01, 0.03, 0.1, and 0.3 M NaCl, whereas responses to NH4Cl were statistically similar between age groups. Second, we investigated if fungiform papillae, which harbor taste buds innervated by the chorda-tympani nerve, were affected by aging in "young" (4-7 months old) and "aged" ("aged1" 18 months old and "aged2" 24-28 months old) rats. Using scanning electron microscopy, we found that aging significantly reduced morphological characteristics associated with intact fungiform-taste pores (hillock, rim, pore presence, and open pore). We conclude that the structure and function of the peripheral-taste system may not be as resistant to aging as previously reported.


Assuntos
Envelhecimento/fisiologia , Nervo da Corda do Tímpano/efeitos dos fármacos , Nervo da Corda do Tímpano/fisiologia , Cloreto de Sódio/farmacologia , Papilas Gustativas/efeitos dos fármacos , Paladar/fisiologia , Fatores Etários , Animais , Microscopia Eletrônica de Varredura , Modelos Animais , Ratos Sprague-Dawley , Papilas Gustativas/fisiologia , Papilas Gustativas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...