Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cells ; 47(1): 100004, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38376482

RESUMO

Insulin is essential for maintaining normoglycemia and is predominantly secreted in response to glucose stimulation by ß-cells. Incretin hormones, such as glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide, also stimulate insulin secretion. However, as obesity and type 2 diabetes worsen, glucose-dependent insulinotropic polypeptide loses its insulinotropic efficacy, whereas GLP-1 receptor (GLP-1R) agonists continue to be effective owing to its signaling switch from Gs to Gq. Herein, we demonstrated that endoplasmic reticulum (ER) stress induced a transition from Gs to Gq in GLP-1R signaling in mouse islets. Intriguingly, chemical chaperones known to alleviate ER stress, such as 4-PBA and TUDCA, enforced GLP-1R's Gq utilization rather than reversing GLP-1R's signaling switch induced by ER stress or obese and diabetic conditions. In addition, the activation of X-box binding protein 1 (XBP1) or activating transcription factor 6 (ATF6), 2 key ER stress-associated signaling (unfolded protein response) factors, promoted Gs utilization in GLP-1R signaling, whereas Gq employment by ER stress was unaffected by XBP1 or ATF6 activation. Our study revealed that ER stress and its associated signaling events alter GLP-1R's signaling, which can be used in type 2 diabetes treatment.


Assuntos
Estresse do Retículo Endoplasmático , Receptor do Peptídeo Semelhante ao Glucagon 1 , Ilhotas Pancreáticas , Resposta a Proteínas não Dobradas , Animais , Camundongos , Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Glucose , Insulina
2.
Korean J Physiol Pharmacol ; 28(1): 31-38, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38154962

RESUMO

As in type 1 diabetes, the loss of pancreatic ß-cells leads to insulin deficiency and the subsequent development of hyperglycemia. Exercise has been proposed as a viable remedy for hyperglycemia. Lithium, which has been used as a treatment for bipolar disorder, has also been shown to improve glucose homeostasis under the conditions of obesity and type 2 diabetes by enhancing the effects of exercise on the skeletal muscles. In this study, we demonstrated that unlike in obesity and type 2 diabetic conditions, under the condition of insulin-deficient type 1 diabetes, lithium administration attenuated pancreatic a-cell mass without altering insulin-secreting ß-cell mass, implying a selective impact on glucagon production. Additionally, we also documented that lithium downregulated the hepatic gluconeogenic program by decreasing G6Pase protein levels and upregulating AMPK activity. These findings suggest that lithium's effect on glucose metabolism in type 1 diabetes is mediated through a different mechanism than those associated with exerciseinduced metabolic changes in the muscle. Therefore, our research presents the novel therapeutic potential of lithium in the treatment of type 1 diabetes, which can be utilized along with insulin and independently of exercise.

3.
Am J Physiol Endocrinol Metab ; 325(5): E448-E465, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37729023

RESUMO

Pancreatic ß-cell dysfunction and eventual loss are key steps in the progression of type 2 diabetes (T2D). Endoplasmic reticulum (ER) stress responses, especially those mediated by the protein kinase RNA-like ER kinase and activating transcription factor 4 (PERK-ATF4) pathway, have been implicated in promoting these ß-cell pathologies. However, the exact molecular events surrounding the role of the PERK-ATF4 pathway in ß-cell dysfunction remain unknown. Here, we report our discovery that ATF4 promotes the expression of PDE4D, which disrupts ß-cell function via a downregulation of cAMP signaling. We found that ß-cell-specific transgenic expression of ATF4 led to early ß-cell dysfunction and loss, a phenotype that resembles accelerated T2D. Expression of ATF4, rather than C/EBP homologous protein (CHOP), promoted PDE4D expression, reduced cAMP signaling, and attenuated responses to incretins and elevated glucose. Furthermore, we found that ß-cells of leptin receptor-deficient diabetic (db/db) mice had elevated nuclear localization of ATF4 and PDE4D expression, accompanied by impaired ß-cell function. Accordingly, pharmacological inhibition of the ATF4 pathway attenuated PDE4D expression in the islets and promoted incretin-simulated glucose tolerance and insulin secretion in db/db mice. Finally, we found that inhibiting PDE4 activity with selective pharmacological inhibitors improved ß-cell function in both db/db mice and ß-cell-specific ATF4 transgenic mice. In summary, our results indicate that ER stress causes ß-cell failure via ATF4-mediated PDE4D production, suggesting the ATF4-PDE4D pathway could be a therapeutic target for protecting ß-cell function during the progression of T2D.NEW & NOTEWORTHY Endoplasmic reticulum stress has been implied to cause multiple ß-cell pathologies during the progression of type 2 diabetes (T2D). However, the precise molecular events underlying this remain unknown. Here, we discovered that elevated ATF4 activity, which was seen in T2D ß cells, attenuated ß-cell proliferation and impaired insulin secretion via PDE4D-mediated downregulation of cAMP signaling. Additionally, we demonstrated that pharmacological inhibition of the ATF4 pathway or PDE4D activity alleviated ß-cell dysfunction, suggesting its therapeutic usefulness against T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Camundongos , Animais , Apoptose , Incretinas/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Estresse do Retículo Endoplasmático/genética , Glucose/metabolismo , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , eIF-2 Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...