Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
1.
J Ethnopharmacol ; 330: 118270, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38685368

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cheonwangbosimdan (CWBSD), a herbal medicine traditionally used for anxiety, insomnia, depression, and heart palpitations, has been reported to have anti-anxiety, antidepressant, cognitive improvement, and neuroprotective effects. AIM OF THE STUDY: The purpose of this study was to determine if CWBSD could affect post-traumatic stress disorder (PTSD)-like behaviors because it has prioritized clinical use over mechanism study. MATERIALS AND METHODS: A single prolonged stress (SPS) mouse model, a well-established animal model of PTSD, was used to investigate whether standardized CWBSD could mitigate PTSD-like behaviors through robust behavioral tests, including the elevated plus-maze test and marble burying test for measuring anxiety-like behaviors, the splash test, forced swimming test, and tail suspension test for evaluating depression-like behaviors, and the Y-maze test and novel object recognition test for assessing cognitive function. Additionally, a fear extinction test was employed to determine whether CWBSD might reverse fear memory extinction deficits. Amygdala tissue was isolated from SPS-treated mouse brain and subjected to Western blotting or quantitative PCR to explore mechanisms by which CWBSD could mitigate PTSD-like behaviors. RESULTS: CWBSD ameliorated emotional impairments and cognitive dysfunction in an SPS-induced PTSD-like mouse model. It also mitigated deficits in abnormal fear memory extinction. Protein expression levels of N-methyl-D-aspartate (NMDA) receptor subunit 2B (GluN2B) and phosphorylation levels of Ca2+/calmodulin-dependent protein kinase II in the amygdala were increased in SPS model mice and normalized by CWBSD. Additionally, co-administration of CWBSD and GluN2B-containing NMDA receptor antagonist, ifenprodil, at each sub-effective dose promoted fear memory extinction. CONCLUSIONS: CWBSD can alleviate SPS-induced PTSD-like behaviors by normalizing GluN2B-containing NMDA receptor activity in the amygdala. Therefore, CWBSD could be a promising candidate for PTSD treatment with fewer adverse effects and better efficacy than existing therapies.


Assuntos
Comportamento Animal , Modelos Animais de Doenças , Receptores de N-Metil-D-Aspartato , Transtornos de Estresse Pós-Traumáticos , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/psicologia , Transtornos de Estresse Pós-Traumáticos/metabolismo , Masculino , Camundongos , Comportamento Animal/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Medo/efeitos dos fármacos , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Ansiedade/tratamento farmacológico , Ansiedade/psicologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-38467326

RESUMO

Post-traumatic stress disorder (PTSD) is a mental illness that can occur in individuals who have experienced trauma. Current treatments for PTSD, typically serotonin reuptake inhibitors, have limited effectiveness for patients and often cause serious adverse effects. Therefore, a novel class of treatment with better pharmacological profile is necessary. D-Pinitol has been reported to be effective for depression and anxiety disorders, but there are no reports associated with PTSD. In the present study, we investigated the effects of D-pinitol in a mouse model of PTSD induced by a single prolonged stress (SPS) protocol. We examined the therapeutic effects of D-pinitol on emotional and cognitive impairments in the SPS mouse model. We also investigated the effects of D-pinitol on fear memory formation. Mineralocorticoid receptor transactivation assay, Western blot, and quantitative PCR were employed to investigate how D-pinitol exerts its pharmacological activities. D-Pinitol ameliorated PTSD-like behaviors in a SPS mouse model. D-Pinitol also normalized the increased mRNA expression levels and protein levels of the mineralocorticoid receptor in the amygdala. A mineralocorticoid receptor agonist reversed the effects of D-pinitol on fear extinction and recall, and the antagonistic property of D-pinitol against the mineralocorticoid receptor was confirmed in vitro. Our findings suggest that D-pinitol could serve as a potential therapeutic agent for PTSD due to its antagonistic effect on the mineralocorticoid receptor.


Assuntos
Inositol/análogos & derivados , Transtornos de Estresse Pós-Traumáticos , Camundongos , Humanos , Animais , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/psicologia , Medo/fisiologia , Extinção Psicológica , Receptores de Mineralocorticoides/metabolismo , Receptores de Mineralocorticoides/uso terapêutico , Modelos Animais de Doenças , Estresse Psicológico/psicologia
3.
J Ethnopharmacol ; 327: 118063, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38493906

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Moutan cortex (MC), the root bark of Paeonia suffruticosa Anderws (Paeoniaceae), has been historically employed in traditional herbal medicine for addressing women's ailments by replenishing kidney Yin. AIM OF THE STUDY: We aimed to explore if paeonol, an active constituent of MC, could ameliorate neuropsychiatric symptoms, such as anxiety, depression, and cognitive impairments, associated with post-menopausal syndrome (PMS) in an ovariectomized (OVX) mouse model. MATERIALS AND METHODS: The experimental design comprised 6 groups, including a sham group, OVX group, paeonol administration groups (3, 10 or 30 mg/kg, p.o.), and an estradiol (E2)-treated positive control group. Behavioral tests including the open field, novel object recognition, Y-maze, elevated plus-maze, splash, and forced swimming tests were conducted. In addition, we investigated the effets of paeonol on the phosphorylated levels of phosphatidylinositol 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR), as well as on the expression levels of G protein-coupled receptor (GPR30) and brain-derived neurotrophic factor (BDNF) in the prefrontal cortex and hippocampus. RESULTS: Paeonol treatment (10 and 30 mg/kg, p.o.) effectively reversed the cognitive decline in OVX mice, measured by the novel object recognition and Y-maze tests, similar to that in the positive control group. Additionally, it alleviated anxiety- and depressive-like behaviors, as evaluated by the elevated plus-maze test, splash test, and forced swimming test. Paeonol restored GPR30 expression levels in the prefrontal cortex and hippocampus, mirroring the effects of E2 administration. Furthermore, it reversed the reduced expression levels of the PI3K-Akt-mTOR signaling pathway in the prefrontal cortex and hippocampus and increased BDNF expression in the hippocampus of OVX mice. CONCLUSION: This research suggests that paeonol would be beneficial for alleviating PMS-associated cognitive impairment, anxiety and depression.


Assuntos
Acetofenonas , Fator Neurotrófico Derivado do Encéfalo , Pós-Menopausa , Camundongos , Humanos , Feminino , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hipocampo , Serina-Treonina Quinases TOR/metabolismo , Mamíferos/metabolismo
4.
J Ginseng Res ; 48(1): 59-67, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38223823

RESUMO

Background: Alzheimer's disease (AD) has memory impairment associated with aggregation of amyloid plaques and neurofibrillary tangles in the brain. Although anti-amyloid ß (Aß) protein antibody and chemical drugs can be prescribed in the clinic, they show adverse effects or low effectiveness. Therefore, the development of a new drug is necessarily needed. We focused on the cognitive function of Panax ginseng and tried to find active ingredient(s). We isolated panaxcerol D, a kind of glycosyl glyceride, from the non-saponin fraction of P. ginseng extract. Methods: We explored effects of acute or sub-chronic administration of panaxcerol D on cognitive function in scopolamine- or Aß25-35 peptide-treated mice measured by several behavioral tests. After behavioral tests, we tried to unveil the underlying mechanism of panaxcerol D on its cognitive function by Western blotting. Results: We found that pananxcerol D reversed short-term, long-term and object recognition memory impairments. The decreased extracellular signal-regulated kinases (ERK) or Ca2+/calmodulin-dependent protein kinase II (CaMKII) in scopolamine-treated mice was normalized by acute administration of panaxcerol D. Glial fibrillary acidic protein (GFAP), caspase 3, NF-kB p65, synaptophysin and brain-derived neurotrophic factor (BDNF) expression levels in Aß25-35 peptide-treated mice were modulated by sub-chronic administration of panaxcerol D. Conclusion: Pananxcerol D could improve memory impairments caused by cholinergic blockade or Aß accumulation through increased phosphorylation level of ERK or its anti-inflammatory effect. Thus, panaxcerol D as one of non-saponin compounds could be used as an active ingredient of P. ginseng for improving cognitive function.

5.
Behav Brain Res ; 461: 114836, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38145873

RESUMO

Alzheimer's disease (AD) is characterized by cognitive impairment. It is common in the elderly. Etiologically, dysfunction of cholinergic neurotransmitter system is prominent in AD. However, disease modifying drug for AD is still unavailable. We hypothesized that krill oil and modified krill oil containing 20 % lysophosphatidylcholine-docosahexaenoic acid (LPC-DHA, LPC20K) could play a crucial role in AD by improving cognitive functions measured by several behavioral tests. We found that LPC20K could ameliorate short-term, long-term, spatial, and object recognition memory under cholinergic hypofunction states. To find the underlying mechanism involved in the effect of LPC20K on cognitive function, we investigated changes of signaling molecules using Western blotting. Expression levels of protein kinase C zeta (PKCζ) and postsynaptic density protein 95 (PSD-95), and phosphorylation levels of extracellular signal-regulated kinase (ERK), Ca2+/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ), and cAMP response element-binding protein (CREB) were significantly increased in LPC20K-administered group compared to those in the memory impairment group. Moreover, the expression levels of BDNF were temporally increased especially 6 or 9 h after administration of LPC20K compared with the control group. These results suggest that LPC20K could ameliorate memory impairment caused by hypocholinergic state by enhancing the expression levels of PKCζ and PSD-95, and phosphorylation levels of ERK, CaMKⅡ and CREB and increasing BDNF expression levels. Therefore, LPC20K could be used as a dietary supplement against cognitive impairment observed in diseases such as AD with a hypocholinergic state.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Euphausiacea , Humanos , Animais , Idoso , Escopolamina/farmacologia , Euphausiacea/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Aprendizagem em Labirinto , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Colinérgicos/farmacologia , Hipocampo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo
6.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37958841

RESUMO

Natural flavone and isoflavone analogs such as 3',4',7-trihydroxyflavone (1), 3',4',7-trihydroxyisoflavone (2), and calycosin (3) possess significant neuroprotective activity in Alzheimer's and Parkinson's disease. This study highlights the in vitro human monoamine oxidase (hMAO) inhibitory potential and functional effect of those natural flavonoids at dopamine and serotonin receptors for their possible role in neuroprotection. In vitro hMAO inhibition and enzyme kinetics studies were performed using a chemiluminescent assay. The functional effect of three natural flavonoids on dopamine and serotonin receptors was tested via cell-based functional assays followed by a molecular docking simulation to predict interactions between a compound and the binding site of the target protein. A forced swimming test was performed in the male C57BL/6 mouse model. Results of in vitro chemiluminescent assays and enzyme kinetics depicted 1 as a competitive inhibitor of hMAO-A with promising potency (IC50 value: 7.57 ± 0.14 µM) and 3 as a competitive inhibitor of hMAO-B with an IC50 value of 7.19 ± 0.32 µM. Likewise, GPCR functional assays in transfected cells showed 1 as a good hD4R antagonist. In docking analysis, these active flavonoids interacted with a determinant-interacting residue via hydrophilic and hydrophobic interactions, with low docking scores comparable to reference ligands. The post-oral administration of 1 to male C57BL/6 mice did not reduce the immobility time in the forced swimming test. The results of this study suggest that 1 and 3 may serve as effective regulators of the aminergic system via hMAO inhibition and the hD4R antagonist effect, respectively, for neuroprotection. The route of administration should be considered.


Assuntos
Dopamina , Flavonoides , Camundongos , Animais , Humanos , Masculino , Flavonoides/farmacologia , Inibidores da Monoaminoxidase/química , Simulação de Acoplamento Molecular , Neuroproteção , Camundongos Endogâmicos C57BL , Monoaminoxidase/metabolismo , Receptores de Serotonina , Relação Estrutura-Atividade , Estrutura Molecular
7.
Molecules ; 28(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37959720

RESUMO

Icariin, a major bioactive compound found in the Epimedium genus, has been reported to exert protective effects against neurodegenerative disorders. In the current study, we aimed to investigate the regulatory effect of icariin and its active metabolites (icariside II and icaritin) against prime G-protein-coupled receptor targets, considering their association with neuronal disorders. Icariside II exhibited selective agonist activity towards the dopamine D3 receptor (D3R), with half-maximal effective concentrations of 13.29 µM. Additionally, they effectively inhibited the specific binding of radioligands to D3R. Molecular docking analysis revealed that icariside II potentially exerts its agonistic effect through hydrogen-bonding interaction with Asp110 of the D3R, accompanied by negative binding energy. Conversely, icaritin demonstrated selective antagonist effects on the muscarinic acetylcholine M2 receptor (M2R). Radioligand binding assay and molecular docking analysis identified icaritin as an orthosteric ligand for M2R. Furthermore, all three compounds, icariin and its two metabolites, successfully mitigated MK-801-induced schizophrenia-like symptoms, including deficits in prepulse inhibition and social interaction, in mice. In summary, these findings highlight the potential of icariin and its metabolites as promising lead structures for the discovery of new drugs targeting cognitive and neurodegenerative disorders.


Assuntos
Doenças Neurodegenerativas , Esquizofrenia , Camundongos , Animais , Maleato de Dizocilpina , Simulação de Acoplamento Molecular , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Flavonoides/farmacologia , Flavonoides/metabolismo
8.
Biomed Pharmacother ; 168: 115639, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37812895

RESUMO

Haloperidol, one of the representative typical antipsychotics, is on the market for schizophrenia but shows severe adverse effects such as extrapyramidal symptoms (EPS) or cognitive impairments. Oleanolic acid (OA) is known to be effective for tardive dyskinesia which is induced by long-term treatment with L-DOPA. This study aimed to investigate whether OA could ameliorate EPS or cognitive impairment induced by haloperidol. The balance beam, catalepsy response, rotarod and vacuous chewing movement (VCM) tests were performed to measure EPS and the novel object recognition test was used to estimate haloperidol-induced cognitive impairment. Levels of dopamine and acetylcholine, the phosphorylation levels of c-AMP-dependent protein kinase A (PKA) and its downstream signaling molecules were measured in the striatum. OA significantly attenuated EPS and cognitive impairment induced by haloperidol without affecting its antipsychotic properties. Valbenazine only ameliorated VCM. Also, OA normalised the levels of dopamine and acetylcholine in the striatum which were increased by haloperidol. Furthermore, the increased phosphorylated PKA, extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB) levels and c-FOS expression level induced by haloperidol were significantly decreased by OA in the striatum. In addition, cataleptic behaviour of haloperidol was reversed by sub-effective dose of H-89 with OA. These results suggest that OA can alleviate EPS and cognitive impairment induced by antipsychotics without interfering with antipsychotic properties via regulating neurotransmitter levels and the PKA signaling pathway in the striatum. Therefore, OA is a potential candidate for treating EPS and cognitive impairment induced by antipsychotics.


Assuntos
Antipsicóticos , Ácido Oleanólico , Camundongos , Animais , Haloperidol/efeitos adversos , Antipsicóticos/efeitos adversos , Dopamina , Acetilcolina , Transdução de Sinais
9.
Life Sci ; 333: 122147, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37802198

RESUMO

AIMS: Menopause is a natural process in women that can lead to post-menopausal syndrome with symptoms such as hot flushes, weight gain, anxiety, cognitive decline, and depression. Hormonal replacement therapy is commonly prescribed. However, it has serious adverse effects. Herbal medicinal products and isoflavones are used as alternatives. D-Pinitol found in Pinaceae and Fabaceae families has anti-inflammatory and antioxidant effects. However, it has not received as much attention as isoflavones. In this study, we investigated whether D-pinitol could alleviate post-menopausal symptoms using an ovariectomized (OVX) mouse model. MAIN METHODS: Female ICR mice were divided into six groups: sham (vehicle), OVX (vehicle), OVX + D-pinitol (10, 30, 100 mg/kg, p.o.), and OVX + estradiol (0.5 mg/kg, s.c.). Treatment with vehicle, D-pinitol, and estradiol began at seven weeks post ovariectomy. We employed several behavioral tests, hot-flush test, and Western blot analysis. KEY FINDINGS: We found that D-pinitol treatment (30, 100 mg/kg, p.o.) reversed cognitive dysfunction in OVX mice (novel object recognition and Y-maze test). Additionally, D-pinitol alleviated anxiety-like behaviors (elevated plus-maze) and reversed depressive-like behaviors (splash test, tail suspension test). It also normalized increased basal tail skin temperature in OVX mice. Moreover, D-pinitol administration reversed decreased expression of ERß and synaptophysin and phosphorylation of ERK and PI3K-Akt-GSK-3ß induced by OVX in the hippocampus and prefrontal cortex. SIGNIFICANCE: These findings indicate that D-pinitol might be a promising candidate for treating post-menopausal symptoms by increasing ERß and synaptophysin expression levels and activation of ERK or PI3K-Akt-GSK-3ß signaling pathway, at least in part.


Assuntos
Isoflavonas , Pós-Menopausa , Humanos , Camundongos , Feminino , Animais , Glicogênio Sintase Quinase 3 beta , Sinaptofisina/farmacologia , Proteínas Proto-Oncogênicas c-akt , Receptor beta de Estrogênio , Fosfatidilinositol 3-Quinases , Camundongos Endogâmicos ICR , Estradiol/farmacologia , Isoflavonas/farmacologia , Ovariectomia/efeitos adversos
10.
Phytother Res ; 37(12): 5904-5915, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37654104

RESUMO

Schizophrenia is a chronic brain disorder characterized by positive symptoms (delusions or hallucinations), negative symptoms (impaired motivation or social withdrawal), and cognitive impairment. In the present study, we explored whether D-pinitol could ameliorate schizophrenia-like behaviors induced by MK-801, an N-methyl-D-aspartate receptor antagonist. Acoustic startle response test was conducted to evaluate the effects of D-pinitol on sensorimotor gating function. Social interaction and novel object recognition tests were employed to measure the impact of D-pinitol on social behavior and cognitive function, respectively. Additionally, we examined whether D-pinitol affects motor coordination. Western blotting was conducted to investigate the mechanism of action of D-pinitol. Single administration of D-pinitol at 30, 100, or 300 mg/kg improved the sensorimotor gating deficit induced by MK801 in the acoustic startle response test. D-Pinitol also reversed social behavior deficits and cognitive impairments induced by MK-801 without causing any motor coordination deficits. Furthermore, D-pinitol reversed increased expression levels of pNF-kB induced by MK-801 treatment and consequently increased expression levels of TNF-α and IL-6 in the prefrontal cortex. These results suggest that D-pinitol could be a potential candidate for treating sensorimotor gating deficits and cognitive impairment observed in schizophrenia by down-regulating transcription factor NF-κB and pro-inflammatory cytokines in the prefrontal cortex.


Assuntos
Disfunção Cognitiva , Esquizofrenia , Camundongos , Animais , Maleato de Dizocilpina/efeitos adversos , Reflexo de Sobressalto/fisiologia , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico
11.
Eur J Pharmacol ; 956: 175954, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37541369

RESUMO

Oleanolic acid (OA) and ursolic acid (UA) are structural isomeric triterpenoids. Both triterpenoids have been reported to be able to improve depression. However, no studies have compared their effects in the same system. Whether OA or UA could ameliorate depression-like behaviors in maternal separation (MS)-induced depression-like model was investigated. MS model is a well-accepted mouse model that can reflect the phenotype and pathogenesis of depression. Depression is a mental illness caused by neuroinflammation or changes in neuroplasticity in certain brain regions, such as the prefrontal cortex and hippocampus. Depression-like behaviors were measured using splash test or forced swimming test. In addition, anxiety-like behaviors were also measured using the open field test or elevated plus-maze test. MS-treated female mice showed greater depression-like behaviors than male mice, and that OA improved several depression-like behaviors, whereas UA only relieved anxiety-like behavior of MS-treated mice. Microglial activation, expression levels of TNF-α, and mRNA levels of IDO1 were increased in the hippocampi of MS-treated female mice. However, OA and UA treatments attenuated such increases. In addition, expression levels of synaptophysin and PSD-95 were decreased in the hippocampi of MS-treated female mice. These decreased expression levels of synaptophysin were reversed by both OA and UA treatments, although decreased PSD-95 expression levels were only reversed by OA treatment. Our findings suggest that MS cause depression-like behaviors through female-specific neuroinflammation, changes of tryptophan metabolism, and alterations of synaptic plasticity. Our findings also suggest that OA could reverse MS-induced depression-like behaviors more effectively than UA.


Assuntos
Depressão , Ácido Oleanólico , Camundongos , Animais , Masculino , Feminino , Depressão/etiologia , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Sinaptofisina/metabolismo , Doenças Neuroinflamatórias , Privação Materna , Hipocampo , Ácido Ursólico
12.
J Ethnopharmacol ; 317: 116800, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37331451

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Artemisia annua L. (Asteraceae) has been used as an antipyretic and anti-parasitic drug in traditional medicine for more than 2000 years. It has also been prescribed to treat symptoms caused by deficiency of Yin, which might be observed in menopausal state from the point of view of traditional medicine. AIM OF THE STUDY: We hypothesized that A. annua might be useful for treating menopausal disorders with less adverse effects than hormone replacement therapy. Thus, the aim of the present study was to investigate effects of A. annua on postmenopausal symptoms of ovariectomized (OVX) mice. MATERIALS AND METHODS: OVX mice were employed as a model for postmenopausal disorders. Mice were treated with a water extract of A. annua (EAA; 30, 100 or 300 mg/kg, p.o.) or 17ß-estradiol (E2; 0.5 mg/kg, s.c.) for 8 weeks. Open field test (OFT), novel object recognition task (NOR), Y-maze test, elevated plus maze test (EPM), splash test and tail suspension test (TST) were conducted to determine whether EAA could ameliorate postmenopausal symptoms. Phosphorylated levels of extracellular signal-regulated kinase (ERK), protein kinase B (Akt), and glycogen synthase kinase-3ß (GSK-3ß), ß-catenin and expression level of synaptophysin in the cortex and hippocampus were evaluated by Western blot analysis. RESULTS: EAA treatment significantly increased the discrimination index in NOR, decreased the time in closed arm than in open arm in EPM, increased grooming time in splash test, and decreased immobility time in TST, as did E2 treatment. In addition, decreased phosphorylation levels of ERK, Akt, GSK-3ß, and ß-catenin and expression levels of synaptophysin in the cortex and hippocampus after OVX were reversed by administration of EAA and E2. CONCLUSION: These results suggest that A. annua can ameliorate postmenopausal symptoms such as cognitive dysfunction, anxiety, anhedonia, and depression by activating ERK, Akt, and GSK-3ß/ß-catenin signaling pathway and hippocampal synaptic plasticity, and that A. annua would be a novel treatment for postmenopausal symptoms.


Assuntos
Artemisia annua , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicogênio Sintase Quinase 3 beta , beta Catenina/metabolismo , Sinaptofisina , Pós-Menopausa , MAP Quinases Reguladas por Sinal Extracelular/metabolismo
13.
J Ethnopharmacol ; 314: 116627, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37164258

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cynanchum paniculatum (Bunge) Kitag. ex H. Hara (Asclepiadaceae) have been traditionally used in East Asia as analgesic or antiviral agents. Interestingly, some Chinese and Korean traditional medicinal books reported that the use of C. paniculatum in the treatment of psychotic symptoms, such as hallucinations and delusions. AIM OF THE STUDY: In this study, we aimed to investigate whether C. paniculatum could improve sensorimotor gating disruption in mice with MK-801-induced schizophrenia-like behaviors. We also aimed to identify the active component of C. paniculatum that could potentially serve as a treatment for schizophrenia and found that paeonol, the major constituent compound of C. paniculatum, showed potential as a treatment for schizophrenia. MATERIALS AND METHODS: To assess the effect of paeonol on mice with MK-801-induced schizophrenia-like behaviors, we carried out a series of behavioral tests related with symptoms of schizophrenia. In addition, we utilized Western blotting and ELISA techniques to investigate the antipsychotic actions of paeonol. RESULT: C. paniculatum extract (100 or 300 mg/kg) and paenol (10 or 30 mg/kg) significantly reversed MK-801-induced prepulse deficits in acoustic startle response test. In addition, paeonol (10 or 30 mg/kg) attenuated social novelty preference and novel object recognition memory on MK-801-induced schizophrenia-like behaviour in mice. Furthermore, the phosphorylation levels of PI3K, Akt, GSK3ß and NF-κB, as well as related pro-inflammatory cytokine, such as IL-1ß and TNF-α, were significantly reversed by the administration of paeonol (10 or 30 mg/kg) in the prefrontal cortex of MK-801-treated mice. CONCLUSIONS: Collectively, these data show that paeonol can potentially be used as an agent for treating sensorimotor gating deficits, negative symptoms, and cognitive deficits, such as those observed in schizophrenia with few adverse effects.


Assuntos
Cynanchum , Esquizofrenia , Animais , Camundongos , NF-kappa B/metabolismo , Maleato de Dizocilpina , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases , Reflexo de Sobressalto , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Glicogênio Sintase Quinase 3 beta
14.
Antioxidants (Basel) ; 12(5)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37237899

RESUMO

Oxidative catabolism of monoamine neurotransmitters by monoamine oxidases (MAOs) produces reactive oxygen species (ROS), which contributes to neuronal cells' death and also lowers monoamine neurotransmitter levels. In addition, acetylcholinesterase activity and neuroinflammation are involved in neurodegenerative diseases. Herein, we aim to achieve a multifunctional agent that inhibits the oxidative catabolism of monoamine neurotransmitters and, hence, the detrimental production of ROS while enhancing neurotransmitter levels. Such a multifunctional agent might also inhibit acetylcholinesterase and neuroinflammation. To meet this end goal, a series of aminoalkyl derivatives of analogs of the natural product hispidol were designed, synthesized, and evaluated against both monoamine oxidase-A (MAO-A) and monoamine oxidase-B (MAO-B). Promising MAO inhibitors were further checked for the inhibition of acetylcholinesterase and neuroinflammation. Among them, compounds 3aa and 3bc were identified as potential multifunctional molecules eliciting submicromolar selective MAO-B inhibition, low-micromolar AChE inhibition, and the inhibition of microglial PGE2 production. An evaluation of their effects on memory and cognitive impairments using a passive avoidance test confirmed the in vivo activity of compound 3bc, which showed comparable activity to donepezil. In silico molecular docking provided insights into the MAO and acetylcholinesterase inhibitory activities of compounds 3aa and 3bc. These findings suggest compound 3bc as a potential lead for the further development of agents against neurodegenerative diseases.

15.
Artigo em Inglês | MEDLINE | ID: mdl-36191804

RESUMO

As a heterogeneous disorder, schizophrenia is known to be associated with neuroinflammation. A recent study showed that several cytokines are higher in the plasma and cerebrospinal fluid of schizophrenia patients. Lansoprazole, a proton pump inhibitor used for treating erosive esophagitis, has been reported to reduce INF-γ-induced neurotoxicity and decrease inflammatory cytokines including IL-1ß, IL-6, and TNF-α. These findings persuaded us to examine whether lansoprazole ameliorates schizophrenia-like symptoms. The schizophrenia mouse model was induced by the acute administration of MK-801, an NMDA receptor antagonist. Sensorimotor gating, Barnes maze, and social novelty preference tests were conducted to evaluate schizophrenia-like behaviors. We found that lansoprazole (0.3, 1, or 3 mg/kg) ameliorated sensorimotor gating deficits, spatial learning, and social deficits caused by MK-801 treatment (0.2 mg/kg). The catalepsy test, balance beam test, and rotarod test were performed to reveal the adverse effects of lansoprazole on motor coordination. The behavioral results indicated that lansoprazole did not result in any motor function deficits. Moreover, lansoprazole decreased inflammatory cytokines including IL-6 and TNF-α only in the cortex, but not in the hippocampus. Collectively, these results suggest that lansoprazole could be a potential candidate for treating schizophrenia patients who suffer from sensorimotor gating deficits or social disability without any motor-related adverse effects.


Assuntos
Lansoprazol , Esquizofrenia , Animais , Camundongos , Maleato de Dizocilpina/farmacologia , Interleucina-6 , Lansoprazol/farmacologia , Lansoprazol/uso terapêutico , Inibidores da Bomba de Prótons , Receptores de N-Metil-D-Aspartato , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Modelos Animais de Doenças
16.
Neuropharmacology ; 219: 109234, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36057317

RESUMO

BACKGROUND: Fragile X syndrome (FXS) is the most common heritable form of neurodevelopmental disorder, which is caused by the loss of fragile X mental retardation protein (FMRP) expression. Despite the unceasing efforts to develop therapeutic agents against FXS based on the pathophysiological changes observed in animal models of FXS and human patients, therapeutic candidates including mGluR signaling modulators have failed to provide sufficient effects. Based on the recent successful demonstration of an endogenous polyamine, agmatine, to improve the autism-like symptoms in the valproic acid animal model of autism, we investigated the effects of agmatine against FXS symptoms using Fmr1 knockout (KO) mice. METHODS: We used male Fmr1 KO mice for behavioral tests such as marble burying, open-field test, memory tasks, social interaction tests and startle response to confirm the symptoms of FXS. We also checked the electrophysiological profile of neural activity in agmatine-treated Fmr1 KO mice. RESULTS: Agmatine reversed the compulsion, learning and memory deficits, hyperactivity, aberrant social interaction, and communication deficit in Fmr1 KO mice while it normalized the aberrant LTP and LTD in the hippocampus. CONCLUSIONS: The results highlight the potential of agmatine's novel disease-ameliorating effects in FXS, which warrants further studies to ascertain whether these findings translate into clinical effects in FXS patients.


Assuntos
Agmatina , Síndrome do Cromossomo X Frágil , Agmatina/farmacologia , Agmatina/uso terapêutico , Animais , Carbonato de Cálcio/metabolismo , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poliaminas , Ácido Valproico
17.
Eur J Pharmacol ; 931: 175188, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35948162

RESUMO

Alzheimer's disease (AD) is the most common degenerative disease and is indicative of dementia. The cerebral accumulation of amyloid ß (Aß), a crucial factor in AD, initiates synaptic and cognitive dysfunction. Therefore, the elevation of synaptic and cognitive functions may help manage dementia in AD. In this study, we suggest hyperoside as a synaptic function- and memory-enhancing agent. Hyperoside enhanced learning and memory in passive avoidance and object recognition tasks. Hyperoside facilitated synaptic long-term potentiation (LTP) in acute hippocampal slices. IEM-1460, a calcium-permeable amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (CP-AMPAR) antagonist, blocked the facilitation effect of hyperoside. Hyperoside also induced N-methyl-d-aspartate receptor (NMDAR)-independent LTP, which was blocked by IEM-1460, suggesting the involvement of CP-AMPARs in the synaptic effects of hyperoside-mediated LTP. PKI (a PKA inhibitor) or SQ22536 (adenylyl cyclase, an AC inhibitor) blocked hyperoside-facilitated LTP and hyperoside-induced NMDAR-independent LTP. Hyperoside-enhanced learning and memory were blocked by IEM-1460, suggesting the involvement of CP-AMPARs in the effect of hyperoside on learning and memory. Finally, hyperoside ameliorated Aß-induced memory impairments in an AD mouse model. These results suggest that hyperoside enhances learning and memory, and this may be due to the effect of CP-AMPARs.


Assuntos
Doença de Alzheimer , Receptores de AMPA , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/farmacologia , Animais , Cálcio/metabolismo , Hipocampo , Potenciação de Longa Duração , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Camundongos , Quercetina/análogos & derivados , Receptores de AMPA/metabolismo , Sinapses
18.
BMC Complement Med Ther ; 22(1): 215, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948926

RESUMO

BACKGROUND: Cordia myxa L. (Boraginaceae) is widely distributed in tropical regions and it's fruits, leaves and stem bark have been utilized in folk medicine for treating trypanosomiasis caused by Trypanosoma cruzi. A population-based study showed that T. cruzi infection is associated with cognitive impairments. Therefore, if C. myxa has ameliorating activities on cognitive function, it would be useful for both T. cruzi infection and cognitive impairments. METHODS: In this study, we evaluated the effects of an ethanol extract of leaves of C. myxa (ELCM) on memory impairments and sensorimotor gating deficits in mice. The phosphorylation level of protein was observed by the Western blot analysis. RESULTS: The administration of ELCM significantly attenuated scopolamine-induced cognitive dysfunction in mice, as measured by passive avoidance test and novel object recognition test. Additionally, in the acoustic startle response test, we observed that the administration of ELCM ameliorated MK-801-induced prepulse inhibition deficits. We found that these behavioral outcomes were related with increased levels of phosphorylation phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt) and glycogen synthase kinase 3 beta (GSK-3ß) in the cortex and extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB) in the hippocampus by western blot analysis. CONCLUSIONS: These results suggest that ELCM would be a potential candidate for treating cognitive dysfunction and sensorimotor gating deficits observed in individuals with neurodegenerative diseases.


Assuntos
Cordia , Animais , Cognição , Etanol , Glicogênio Sintase Quinase 3 beta/farmacologia , Camundongos , Camundongos Endogâmicos ICR , Fosfatidilinositol 3-Quinases , Extratos Vegetais/farmacologia , Folhas de Planta , Reflexo de Sobressalto
20.
Behav Brain Res ; 426: 113836, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35278481

RESUMO

Current antipsychotics have limited effects on the cognitive deficits of schizophrenia patients, therefore, cognitive remediation has been applied to schizophrenia patients to ameliorate cognitive dysfunction. However, the neurobiological mechanisms of cognitive training programs have not been well studied because established animal models are not suitable or because repetitive training has not been introduced in such animal models. In the present study, we employed Toll-like receptor 2 knockout (TLR2 KO) mouse as a schizophrenia mouse model and evaluated the effects of repetitive training as cognitive remediation therapy for schizophrenia. TLR2 KO mice could fully learn the Barnes maze paradigm through repetitive training to improve memory retrieval and reversal learning ability, although the learning speed was slower than that of wild-type (WT) animals. In addition, highly repetitive training activated the neuronal cells in the prefrontal cortex, hippocampal CA3 and hippocampal DG regions of TLR2 KO mice, similar to WT mice. These results indicated that TLR2 KO mouse would be a useful tool for studying the neurobiological mechanisms of cognitive remediation in schizophrenia.


Assuntos
Cognição , Receptor 2 Toll-Like , Animais , Hipocampo/metabolismo , Humanos , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reversão de Aprendizagem/fisiologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...