Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anesth Pain Med (Seoul) ; 17(1): 35-43, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34784460

RESUMO

BACKGROUND: This study assessed the effect of a single bolus administration of lidocaine on the prevention of tourniquet-induced hypertension (TIH) and compared the effect of lidocaine to that of ketamine in patients undergoing general anesthesia. METHODS: This randomized, controlled, double-blind study included 75 patients who underwent lower limb surgery using a tourniquet. The patients were administered lidocaine (1.5 mg/kg, n = 25), ketamine (0.2 mg/kg, n = 25) or placebo (n = 25). The study drugs were administered intravenously 10 min before tourniquet inflation. Systolic blood pressure (SBP), diastolic blood pressure (DBP), and heart rate (HR) were measured before tourniquet inflation, after tourniquet inflation for 60 min at 10 min intervals, and immediately after tourniquet deflation. The incidence of TIH, defined as an increase of 30% or more in SBP or DBP during tourniquet inflation, was also recorded. RESULTS: SBP, DBP, and HR increased significantly over time in the control group compared to those in the lidocaine and ketamine groups for 60 min after tourniquet inflation (P < 0.001, P < 0.001, and P = 0.007, respectively). The incidence of TIH was significantly lower in the lidocaine (n = 4, 16%) and ketamine (n = 3, 12%) group than in the control group (n = 14, 56%) (P = 0.001). CONCLUSION: Single-bolus lidocaine effectively attenuated blood pressure increase due to tourniquet inflation, with an effect comparable to that of bolus ketamine.

2.
J Cell Mol Med ; 24(20): 12211-12218, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32931139

RESUMO

Although diesel airborne particulate matter (PM2.5) has been known to play a role in many human diseases, there is no direct evidence that therapeutic drugs or proteins can diminish PM2.5-induced diseases. Nevertheless, studies examining the negative control mechanisms of PM2.5-induced diseases are critical to develop novel therapeutic medications. In this study, the consensus PDZ peptide of ZO-1 inhibited PM2.5-induced inflammatory cell infiltration, pro-inflammatory cytokine gene expression, and TEER in bronchoalveolar lavage (BAL) fluid and AM cells. Our data indicated that the PDZ domain in ZO-1 is critical for regulation of the PM2.5-induced inflammatory microenvironment. Therefore, the PDZ peptide may be a potential therapeutic candidate during PM-induced respiratory diseases.


Assuntos
Regulação para Baixo , Gasolina/efeitos adversos , Material Particulado/efeitos adversos , Peptídeos/farmacologia , Pneumonia/induzido quimicamente , Pneumonia/patologia , Proteína da Zônula de Oclusão-1/química , Motivos de Aminoácidos , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Humanos , Domínios PDZ , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA