Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JAC Antimicrob Resist ; 5(3): dlad056, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37193005

RESUMO

Background: WGS has significant potential to help tackle the major public health problem of TB. The Republic of Korea has the third highest rates of TB of all Organisation for Economic Cooperation and Development countries but there has been very limited use of WGS in TB to date. Objectives: A retrospective comparison of Mycobacterium tuberculosis (MTB) clinical isolates from 2015 to 2017 from two centres in the Republic of Korea using WGS to compare phenotypic drug susceptibility testing (pDST) and WGS drug susceptibility predictions (WGS-DSP). Methods: Fifty-seven MTB isolates had DNA extracted and were sequenced using the Illumina HiSeq platform. The WGS analysis was performed using bwa mem, bcftools and IQ-Tree; resistance markers were identified using TB profiler. Phenotypic susceptibilities were carried out at the Supranational TB reference laboratory (Korean Institute of Tuberculosis). Results: For first-line antituberculous drugs concordance for rifampicin, isoniazid, pyrazinamide and ethambutol was 98.25%, 92.98%, 87.72% and 85.96%, respectively. The sensitivity of WGS-DSP compared with pDST for rifampicin, isoniazid, pyrazinamide and ethambutol was 97.30%, 92.11%, 78.95% and 95.65%, respectively. The specificity for these first-line antituberculous drugs was 100%, 94.74%, 92.11% and 79.41%, respectively. The sensitivity and specificity for second-line drugs ranged from 66.67% to 100%, and from 82.98% to 100%, respectively. Conclusions: This study confirms the potential role for WGS in drug susceptibility prediction, which would reduce turnaround times. However, further larger studies are needed to ensure current databases of drug resistance mutations are reflective of the TB present in the Republic of Korea.

2.
Tuberc Respir Dis (Seoul) ; 78(4): 349-55, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26508922

RESUMO

BACKGROUND: The tuberculin skin test (TST) is the standard tool to diagnose latent tuberculosis infection (LTBI) in mass screening. The aim of this study is to find an optimal cut-off point of the TST+ rate within tuberculosis (TB) contacts to predict the active TB development among adolescents in school TB outbreaks. METHODS: The Korean National Health Insurance Review and Assessment database was used to identify active TB development in relation to the initial TST (cut-off, 10 mm). The 7,475 contacts in 89 schools were divided into two groups: Incident TB group (43 schools) and no incident TB group (46 schools). LTBI treatment was initiated in 607 of the 1,761 TST+ contacts. The association with active TB progression was examined at different cut-off points of the TST+ rate. RESULTS: The mean duration of follow-up was 3.9±0.9 years. Thirty-three contacts developed active TB during the 4,504 person-years among the TST+ contacts without LTBI treatment (n=1,154). The average TST+ rate for the incident TB group (n=43) and no incident TB group (n=46) were 31.0% and 15.5%, respectively. The TST+ rate per group was related with TB progression (odds ratio [OR], 1.025; 95% confidence interval [CI], 1.001-1.050; p=0.037). Based on the TST+ rate per group, active TB was best predicted at TST+ ≥ 16% (OR, 3.11; 95% CI, 1.29-7.51; area under curve, 0.64). CONCLUSION: Sixteen percent of the TST+ rate per group within the same grade students can be suggested as an optimal cut-off to predict active TB development in middle and high schools TB outbreaks.

3.
J Microbiol Methods ; 63(2): 165-72, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15893392

RESUMO

The frequency of resistance genotypes among Beijing and non-Beijing strains was compared using a reverse blot hybridization assay to detect mutations within genes associated with rifampicin (rpoB) and isoniazid (katG, inhA, and ahpC) resistance. Of the 743 Mycobacterium tuberculosis isolates, 569 (77%) belonged to Beijing family. The proportion of Beijing strains was significantly higher among MDR-TB isolates than among drug-susceptible strains (82% vs. 72%, p<0.01). Genotype analysis of the rpoB gene revealed significantly lower rates of the Ser531Leu mutation rate among Beijing vs. non-Beijing MDR-TB strains (41% vs. 66%, p<0.005). While the mutation for Ser315Thr in the katG gene was more common among Beijing vs. non-Beijing family strains (65% vs. 50%, p<0.01), the mutation rate of promoter region of the inhA gene was lower among Beijing strains compared with non-Beijing strains (14% vs. 25%, p<0.05). Reverse hybridization successfully detected over 80% of isoniazid-resistant strains and over 92% of rifampicin-resistant strains among Korean isolates. Significant differences in mutation rates in the rpoB, katG, and inhA genes between Beijing strains and non-Beijing strains could explain discrepancies in mutation rates of genotypes in different countries. Reverse hybridization was useful for rapid detection of isoniazid and rifampicin resistant strains.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana/genética , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Pulmonar/epidemiologia , Proteínas de Bactérias/genética , China , Genótipo , Humanos , Coreia (Geográfico)/epidemiologia , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/genética , Prevalência , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Pulmonar/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...