Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 74(1): 374-86, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24197137

RESUMO

Aberrant activation of fibroblast growth factor receptors (FGFR) contributes to breast cancer growth, progression, and therapeutic resistance. Because of the complex nature of the FGF/FGFR axis, and the numerous effects of FGFR activation on tumor cells and the surrounding microenvironment, the specific mechanisms through which aberrant FGFR activity contributes to breast cancer are not completely understood. We show here that FGFR activation induces accumulation of hyaluronan within the extracellular matrix and that blocking hyaluronan synthesis decreases proliferation, migration, and therapeutic resistance. Furthermore, FGFR-mediated hyaluronan accumulation requires activation of the STAT3 pathway, which regulates expression of hyaluronan synthase 2 (HAS2) and subsequent hyaluronan synthesis. Using a novel in vivo model of FGFR-dependent tumor growth, we demonstrate that STAT3 inhibition decreases both FGFR-driven tumor growth and hyaluronan levels within the tumor. Finally, our results suggest that combinatorial therapies inhibiting both FGFR activity and hyaluronan synthesis is more effective than targeting either pathway alone and may be a relevant therapeutic approach for breast cancers associated with high levels of FGFR activity. In conclusion, these studies indicate a novel targetable mechanism through which FGFR activation in breast cancer cells induces a protumorigenic microenvironment.


Assuntos
Neoplasias da Mama/metabolismo , Ácido Hialurônico/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Neoplasias da Mama/patologia , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Células MCF-7 , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Receptores de Fatores de Crescimento de Fibroblastos/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais , Microambiente Tumoral
2.
Genome Res ; 23(3): 547-54, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23282329

RESUMO

Improved methods for engineering sequence-specific nucleases, including zinc finger nucleases (ZFNs) and TAL effector nucleases (TALENs), have made it possible to precisely modify plant genomes. However, the success of genome modification is largely dependent on the intrinsic activity of the engineered nucleases. In this study, we sought to enhance ZFN-mediated targeted mutagenesis and gene targeting (GT) in Arabidopsis by manipulating DNA repair pathways. Using a ZFN that creates a double-strand break (DSB) at the endogenous ADH1 locus, we analyzed repair outcomes in the absence of DNA repair proteins such as KU70 and LIG4 (both involved in classic nonhomologous end-joining, NHEJ) and SMC6B (involved in sister-chromatid-based homologous recombination, HR). We achieved a fivefold to 16-fold enhancement in HR-based GT in a ku70 mutant and a threefold to fourfold enhancement in GT in the lig4 mutant. Although the NHEJ mutagenesis frequency was not significantly changed in ku70 or lig4, DNA repair was shifted to microhomology-dependent alternative NHEJ. As a result, mutations in both ku70 and lig4 were predominantly large deletions, which facilitates easy screening for mutations by PCR. Interestingly, NHEJ mutagenesis and GT at the ADH1 locus were enhanced by sixfold to eightfold and threefold to fourfold, respectively, in a smc6b mutant. The increase in NHEJ-mediated mutagenesis by loss of SMC6B was further confirmed using ZFNs that target two other Arabidopsis genes, namely, TT4 and MPK8. Considering that components of DNA repair pathways are highly conserved across species, mutations in DNA repair genes likely provide a universal strategy for harnessing repair pathways to achieve desired targeted genome modifications.


Assuntos
Arabidopsis/genética , Reparo do DNA , Marcação de Genes/métodos , Mutagênese Sítio-Dirigida/métodos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Reparo do DNA por Junção de Extremidades , DNA Ligases/genética , DNA Ligases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Perfilação da Expressão Gênica , Loci Gênicos , Genoma de Planta , Recombinação Homóloga , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Plantas Geneticamente Modificadas , Dedos de Zinco/genética
3.
PLoS One ; 7(9): e45877, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029290

RESUMO

Tumor formation is an extensive process requiring complex interactions that involve both tumor cell-intrinsic pathways and soluble mediators within the microenvironment. Tumor cells exploit the intrinsic functions of many soluble molecules, including chemokines and their receptors, to regulate pro-tumorigenic phenotypes that are required for growth and progression of the primary tumor. Previous studies have shown that activation of inducible FGFR1 (iFGFR1) in mammary epithelial cells resulted in increased proliferation, migration, and invasion in vitro and tumor formation in vivo. These studies also demonstrated that iFGFR1 activation stimulated recruitment of macrophages to the epithelium where macrophages contributed to iFGFR1-mediated epithelial cell proliferation and angiogenesis. The studies presented here further utilize this model to identify the mechanisms that regulate FGFR1-induced macrophage recruitment. Results from this study elucidate a novel role for the inflammatory chemokine CX3CL1 in FGFR1-induced macrophage migration. Specifically, we illustrate that activation of both the inducible FGFR1 construct in mouse mammary epithelial cells and endogenous FGFR in the triple negative breast cancer cell line, HS578T, leads to expression of the chemokine CX3CL1. Furthermore, we demonstrate that FGFR-induced CX3CL1 is sufficient to recruit CX3CR1-expressing macrophages in vitro. Finally, blocking CX3CR1 in vivo leads to decreased iFGFR1-induced macrophage recruitment, which correlates with decreased angiogenesis. While CX3CL1 is a known target of FGF signaling in the wound healing environment, these studies demonstrate that FGFR activation also leads to induction of CX3CL1 in a tumor setting. Furthermore, these results define a novel role for CX3CL1 in promoting macrophage recruitment during mammary tumor formation, suggesting that the CX3CL1/CX3CR1 axis may represent a potential therapeutic approach for targeting breast cancers associated with high levels of tumor-associated macrophages.


Assuntos
Movimento Celular , Quimiocina CX3CL1/fisiologia , Macrófagos/fisiologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Neoplasias da Mama , Receptor 1 de Quimiocina CX3C , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Quimiocina CX3CL1/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Feminino , Humanos , Macrófagos/metabolismo , Glândulas Mamárias Animais/irrigação sanguínea , Glândulas Mamárias Animais/patologia , Camundongos , Camundongos Transgênicos , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Receptores de Quimiocinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...