Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 12(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36009726

RESUMO

An increase in the percentage of monocytes with reduced HLA-DR expression and immunosuppressive properties has been reported in numerous human neoplastic diseases, including lymphoma. However, there are no analogous studies on phenotypical variations in the peripheral blood monocytes in dogs with lymphoma. The aim of this study was to determine the difference in the expression of the MHCII molecule on peripheral blood monocytes in dogs with lymphoma before any treatment (NRG) and in dogs that had previously received glucocorticoids (RG) in comparison to healthy dogs. Flow cytometry immunophenotyping of peripheral blood leukocytes was performed using canine-specific or cross-reactive antibodies against CD11b, CD14 and MHCII. In the blood of dogs with lymphoma (NRG and RG), compared to that of healthy ones, the MHCII+ and MHCII- monocytes ratio was changed due to an increase in the percentage of MHCII- monocytes. The number of MHCII- monocytes was significantly higher only in RG dogs compared to healthy ones, which might result from the release of these cells from the blood marginal pool due to the action of glucocorticoids. Our results encourage further studies to assess if changes in MHCII expression affect immune status in dogs with lymphoma.

2.
Animals (Basel) ; 9(8)2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31430895

RESUMO

Extracellular vesicles (EVs) are a heterogeneous population of submicron-sized structures released during the activation, proliferation, or apoptosis of various types of cells. Due to their size, their role in cell-to-cell communication in cancer is currently being discussed. In blood, the most abundant population of EVs is platelet-derived EVs (PEVs). The aim of this study was to estimate the absolute number and the origin of EVs in the blood of healthy dogs and of dogs with various types of cancer. The EV absolute number and cellular origin were examined by flow cytometry technique. EVs were classified on the basis of surface annexin V expression (phosphatidylserine PS+) and co-expression of specific cellular markers (CD61, CD45, CD3, CD21). The number of PEVs was significantly higher in dogs with cancer (median: 409/µL, range: 42-2748/µL vs. median: 170/µL, range: 101-449/µL in controls). The numbers of EVs derived from leukocytes (control median: 86/µL, range: 40-240/µL; cancer median: 443/µL, range: 44-3 352/µL) and T cells (control median: 5/µL, range: 2-66/µL; cancer median: 108/µL, range: 3-1735/µL) were higher in dogs with neoplasia compared to healthy controls. The estimation of PEV and leukocyte-derived EV counts may provide a useful biological marker in dogs with cancer.

3.
PLoS One ; 14(7): e0219214, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31269060

RESUMO

In humans and mice, the detailed phenotypic and functional characterization of peripheral blood monocytes allows for identification of three monocyte subsets. There are also evidences of monocyte phenotypic heterogeneity in other species, including cattle, sheep, pig and horse. However, little is known about such variability in dogs. The aim of the study was to determine whether and how peripheral blood monocytes of healthy dogs differ in the presence of MHCII and CD4 and in the basal production of reactive oxygen species (ROS). Three distinct subsets of CD11b+CD14+ monocytes were found in peripheral blood samples of healthy dogs, based on the variations in the density of MHCII and CD4 surface molecules: MHCII+CD4- (Mo1), MHCII+CD4+ (Mo2) and MHCII-CD4+ (Mo3). The Mo2 and Mo3 were significantly lower in percentage than Mo1 but their basal ROS production was higher. Within the Mo2 and Mo3 subsets, the percentage of cells producing ROS was significantly higher comparing to cells lacking this activity. Canine peripheral blood monocytes vary in the expression of MHCII and CD4 and in the activity suggesting that cells within the three identified subsets carry out different functions. The higher production of ROS in non-activated cells within small subsets of Mo2 and Mo3 monocytes might indicate their immunomodulatory potential.


Assuntos
Antígenos CD4/sangue , Antígenos de Histocompatibilidade Classe II/sangue , Monócitos/metabolismo , Animais , Cães , Feminino , Masculino , Neutrófilos/metabolismo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA