Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-467705

RESUMO

The precise molecular mechanisms behind life-threatening lung abnormalities during severe SARS-CoV-2 infections are still unclear. To address this challenge, we performed whole transcriptome sequencing of lung autopsies from 31 patients suffering from severe COVID-19 related complications and 10 uninfected controls. Using a metatranscriptome analysis of lung tissue samples we identified the existence of two distinct molecular signatures of lethal COVID-19. The dominant "classical" signature (n=23) showed upregulation of unfolded protein response, steroid biosynthesis and complement activation supported by massive metabolic reprogramming leading to characteristic lung damage. The rarer signature (n=8) potentially representing "Cytokine Release Syndrome" (CRS) showed upregulation of cytokines such IL1 and CCL19 but absence of complement activation and muted inflammation. Further, dissecting expression of individual genes within enriched pathways for patient signature suggests heterogeneity in host response to the primary infection. We found that the majority of patients cleared the SARS-CoV-2 infection, but all suffered from acute dysbiosis with characteristic enrichment of opportunistic pathogens such as Staphylococcus cohnii in "classical" patients and Pasteurella multocida in CRS patients. Our results suggest two distinct models of lung pathology in severe COVID-19 patients that can be identified through the status of the complement activation, presence of specific cytokines and characteristic microbiome. This information can be used to design personalized therapy to treat COVID-19 related complications corresponding to patient signature such as using the identified drug molecules or mitigating specific secondary infections.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20229658

RESUMO

BackgroundThe Covid-19 pandemic began in China in December 2019. India is the second most affected country, as of November 2020 with more than 8.5million cases. Covid-19 infection primarily involves the lung with severity of illness varying from influenza-like illness to acute respiratory distress syndrome. Other organs have also found to be variably affected. Studies evaluating the histopathological changes of Covid-19 are critical in providing a better understanding of the disease pathophysiology and guiding treatment. Minimally invasive biopsy techniques (MITS/B) provide an easy and suitable alternative to complete autopsies. In this prospective single center study we present the histopathological examination of 37 patients who died with complications of Covid-19. MethodsThis was an observational study conducted in the Intensive Care Unit of JPN Trauma Centre AIIMS. A total of 37 patients who died of Covid-19 were enrolled in the study. Post-mortem percutaneous biopsies were taken by the help of surface landmarking/ultrasonography guidance from lung, heart, liver, and kidneys; after obtaining ethical consent. The biopsy samples were then stained with haematoxylin and eosin stain. Immunohistochemistry (IHC) was performed using CD61 and CD163 in all lung cores. SARS-CoV-2 virus was detected using IHC with primary antibodies in selected samples. Details regarding demographics, clinical parameters, hospital course, treatment details, and laboratory investigations were also collected for clinical correlation. ResultsA total of 37 patients underwent post-mortem minimally invasive tissue sampling. Mean age of the patients was 48.7years and 59.5% of them were males. Respiratory failure was the most common complication seen in 97.3%. Lung histopathology showed acute lung injury and diffuse alveolar damage in 78% patients. Associated bronchopneumonia was seen in 37.5% patients and scattered microthrombi were visualised in 21% patients. Immunostaining with CD61 and CD163 highlighted megakaryocytes, and increased macrophages in all samples. Immunopositivity for SARS-CoV-2 was observed in Type II pneumocytes. Acute tubular injury with epithelial vacuolization was seen in 46% of the renal biopsies but none of them showed evidence of microvascular thrombosis. 71% of the liver tissue cores showed evidence of Kupfer cell hyperplasia. 27.5% had evidence of submassive hepatic necrosis and 14% had features of acute on chronic liver failure. All the heart biopsies showed non-specific features such as hypertrophy with nucleomegaly with no evidence of myocardial necrosis in any of the samples. ConclusionsThe most common finding in this cohort is the diffuse alveolar damage with demonstration of SARS-CoV-2 protein in the acute phase of DAD. Microvascular thrombi were rarely identified in the lung, liver and kidney. Substantial hepatocyte necrosis, hepatocyte degeneration, Kupffer cell hypertrophy, micro, and macrovesicular steatosis unrelated to microvascular thrombi suggests that liver might be a primary target of Covid-19. This study highlights the importance of MITS/B in better understanding the pathological changes associated with Covid-19.

3.
Analyst ; 143(14): 3366-3373, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29893758

RESUMO

The clinical diagnosis of traumatic brain injury (TBI) is based on neurological examination and neuro-imaging tools such as CT scanning and MRI. However, neurological examination at times may be confounded by consumption of alcohol or drugs and neuroimaging facilities may not be available at all centers. Human ubiquitin C-terminal hydrolase (UCHL1) is a well-accepted serum biomarker for severe TBI and can be used to detect the severity of a head injury. A reliable, rapid, cost effective, bedside and easy to perform method for the detection of UCHL1 is a pre-requisite for wide clinical applications of UCHL1 as a TBI biomarker. We developed a rapid detection method for UCHL1 using surface plasmon resonance of gold nanoparticles with a limit of detection (LOD) of 0.5 ng mL-1. It has a sensitivity and specificity of 100% each and meets an analytical precision similar to that of conventional sandwich ELISA but can be performed rapidly. Using this method we successfully detected UCHL1 in a cohort of 66 patients with TBI and were reliably able to distinguish mild TBI from moderate to severe TBI.


Assuntos
Biomarcadores/sangue , Lesões Encefálicas/diagnóstico , Nanopartículas Metálicas , Ubiquitina Tiolesterase/sangue , Lesões Encefálicas/sangue , Ouro , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA