Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Comp Immunol ; 132: 104398, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35307479

RESUMO

The low diversity in marine mammal major histocompatibility complex (MHC) appears to support the hypothesis of reduced pathogen selective pressure in aquatic systems compared to terrestrial environments. However, the lack of characterization of the aquatic and evolutionarily distant Sirenia precludes drawing more generalized conclusions. Therefore, we aimed to characterize the MHC DQB diversity of two manatee species and compare it with those reported for marine mammals. Our results identified 12 and 6 alleles in T. inunguis and T. manatus, respectively. Alleles show high rates of nonsynonymous substitutions, suggesting loci are evolving under positive selection. Among aquatic mammals, Pinnipeda DQB had smaller numbers of alleles, higher synonymous substitution rate, and a dN/dS ratio closer to 1, suggesting it may be evolving under more relaxed selection compared to fully aquatic mammals. This contradicts one of the predictions of the hypothesis that aquatic environments impose reduced pathogen pressure to mammalian immune system. These results suggest that the unique evolutionary trajectories of mammalian MHC may impose challenges in drawing ecoevolutionary conclusions from comparisons across distant vertebrate lineages.


Assuntos
Complexo Principal de Histocompatibilidade , Trichechus , Alelos , Animais , Complexo Principal de Histocompatibilidade/genética , Mamíferos/genética , Filogenia , Seleção Genética , Sirênios
2.
Genet Mol Biol ; 44(2): e20190252, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33847701

RESUMO

Amazonian (Trichechus inunguis) and West Indian (Trichechus manatus) manatees are aquatic mammals vulnerable to extinction found in the Amazon basin and the coastal western Atlantic. Toll-like receptors (TLR) play a key role in recognizing pathogen-associated molecular patterns using leucine-rich repeats (LRRs). We described the diversity of TLR4 and TLR8 genes in these two species of manatee. Amazonian manatee showed seven SNPs in TLR4 and the eight in TLR8, while West Indian manatee shared four and six of those SNPs, respectively. In our analysis, TLR4 showed one non-conservative amino acid replacement substitution in LRR7 and LRR8, on the other hand, TLR8 was less variable and showed only conserved amino acid substitutions. Selection analysis showed that only one TLR4 site was subjected to positive selection and none in TLR8. TLR4 in manatees did not show any evidence of convergent evolution compared to species of the cetacean lineage. Differences in TLR4 and TLR8 polymorphism may be related to distinct selection by pathogens, population reduction of West Indian manatees, or an expected consequence of population expansion in Amazonian manatees. Future studies combining pathogen association and TLR polymorphism may clarify possible roles of these genes and be used for conservation purposes of manatee species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA