Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 183(14): 4190-201, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11418559

RESUMO

The proteins involved in the utilization of L-arabinose by Bacillus subtilis are encoded by the araABDLMNPQ-abfA metabolic operon and by the araE/araR divergent unit. Transcription from the ara operon, araE transport gene, and araR regulatory gene is induced by L-arabinose and negatively controlled by AraR. The purified AraR protein binds cooperatively to two in-phase operators within the araABDLMNPQ-abfA (OR(A1) and OR(A2)) and araE (OR(E1) and OR(E2)) promoters and noncooperatively to a single operator in the araR (OR(R3)) promoter region. Here, we have investigated how AraR controls transcription from the ara regulon in vivo. A deletion analysis of the ara promoters region showed that the five AraR binding sites are the key cis-acting regulatory elements of their corresponding genes. Furthermore, OR(E1)-OR(E2) and OR(R3) are auxiliary operators for the autoregulation of araR and the repression of araE, respectively. Analysis of mutations designed to prevent cooperative binding of AraR showed that in vivo repression of the ara operon requires communication between repressor molecules bound to two properly spaced operators. This communication implicates the formation of a small loop by the intervening DNA. In an in vitro transcription system, AraR alone sufficed to abolish transcription from the araABDLMNPQ-abfA operon and araE promoters, strongly suggesting that it is the major protein involved in the repression mechanism of L-arabinose-inducible expression in vivo. The ara regulon is an example of how the architecture of the promoters is adapted to respond to the particular characteristics of the system, resulting in a tight and flexible control.


Assuntos
Arabinose/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/genética , DNA Bacteriano/fisiologia , Regiões Operadoras Genéticas/fisiologia , Proteínas Repressoras/genética , Fatores de Transcrição , Fator de Transcrição AraC , Sequência de Bases , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Proteínas de Transporte de Monossacarídeos/genética , Mutagênese , Óperon/fisiologia , Regiões Promotoras Genéticas , Regulon/fisiologia
2.
Mol Microbiol ; 33(3): 476-89, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10417639

RESUMO

The AraR protein is a negative regulator involved in L-arabinose-inducible expression of the Bacillus subtilis araABDLMNPQ-abfA metabolic operon and of the araE/araR genes that are organized as a divergent transcriptional unit. The two ara gene clusters are found at different positions in the bacterial chromosome. AraR was overproduced in Escherichia coli and purified to more than 95% homogeneity. AraR binds specifically to DNA fragments carrying the promoter region of the ara genes. DNase I protection assays showed that AraR binds to two sequences within the promoters of the araABDLMNPQ-abfA operon and the araE gene, and to one sequence in the araR promoter. The AraR target sequences are palindromic and share high identity, defining a 16 bp AraR consensus operator sequence showing half-symmetry, ATTTGTAC. Binding of AraR to DNA was inhibited by L-arabinose but not by other sugars. The two operator sites within the araABDLMNPQ-abfA operon and araE promoters are located on the same side of the DNA helix, and a pattern of enhanced and diminished DNase I cleavage was observed between them, but not in the araR promoter. Quantitative DNase I footprinting in DNA templates containing one, two or three AraR binding sites showed that the repressor binds cooperatively to the two operator sites within the metabolic operon and araE promoters but not to the site located in the araR promoter. These results are consistent with two modes for AraR transcriptional repression that might correlate with different physiological requirements: a high level of repression is achieved by DNA bending requiring two in-phase operator sequences (metabolic operon and araE transport gene), whereas binding to a single operator, which autoregulates araR expression, is 10-fold less effective.


Assuntos
Arabinose/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias , Proteínas Repressoras/química , Fatores de Transcrição , Sequência de Aminoácidos , Fator de Transcrição AraC , Sequência de Bases , Sequência Consenso , Pegada de DNA , Proteínas de Ligação a DNA/química , Desoxirribonuclease I , Escherichia coli , Proteínas de Escherichia coli , Regulação Bacteriana da Expressão Gênica/genética , Dados de Sequência Molecular , Oligodesoxirribonucleotídeos , Óperon/genética , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Recombinantes/química , Alinhamento de Sequência
3.
J Bacteriol ; 179(24): 7705-11, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9401028

RESUMO

The Bacillus subtilis araR locus (mapped at about 294 degrees on the genetic map) comprises two open reading frames with divergently arranged promoters, the regulatory gene, araR, encoding a repressor, and a partially cloned gene, termed araE by analogy to the Escherichia coli L-arabinose permease gene. Here, we report the cloning and sequencing of the entire araE gene encoding a 50.4-kDa polypeptide. The araE gene is monocistronic (as determined by Northern blot analysis), and its putative product is very similar to a number of prokaryotic proton-linked monosaccharide transporters (the group I family of membrane transport proteins). Insertional inactivation of the araE gene leads to a conditional Ara- phenotype dependent on the concentration of L-arabinose in the medium. Therefore, we assume that araE encodes a permease involved in L-arabinose transport into the cell. The araE promoter region contains -10 and -35 regions (as determined by primer extension analysis) very similar to those recognized by RNA polymerase containing the major vegetative-cell sigma factor sigmaA, and the -35 region of the transcription start point for araE is located 2 bp from the -35 region of the araR gene. Transcriptional studies demonstrated that the expression from the araE promoter is induced by L-arabinose, repressed by glucose, and negatively regulated by AraR. These observations are consistent with a model according to which in the absence of L-arabinose, AraR binds to a site(s) within the araE/araR promoter, preventing transcription from the araE promoter and simultaneously limiting the frequency of initiation from its own promoter; the addition of L-arabinose will allow transcription from the araE promoter and increase the frequency of initiation from the araR promoter.


Assuntos
Arabinose/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias , Proteínas de Escherichia coli , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Proteínas de Transporte de Monossacarídeos/genética , Fatores de Transcrição , Sequência de Aminoácidos , Fator de Transcrição AraC , Sequência de Bases , Transporte Biológico , Clonagem Molecular , Dados de Sequência Molecular , Regiões Promotoras Genéticas , RNA Bacteriano/genética , RNA Mensageiro/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Repressoras/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Estereoisomerismo , Transcrição Gênica
4.
J Bacteriol ; 179(5): 1598-608, 1997 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9045819

RESUMO

The Bacillus subtilis araC locus, mapped at about 294 degrees on the genetic map, was defined by mutations conferring an Ara- phenotype to strains bearing the metabolic araA, araB, and araD wild-type alleles (located at about 256 degrees on the genetic map) and by mutants showing constitutive expression of the three genes. In previous work, it has been postulated that the gene in which these mutations lie exerts its effect on the ara metabolic operon in trans, and this locus was named araC by analogy to the Escherichia coli regulatory gene. Here, we report the cloning and sequencing of the araC locus. This region comprises two open reading frames with divergently arranged promoters, the regulatory gene, araC, encoding a 41-kDa polypeptide, and a partially cloned gene, termed araE, which most probably codes for a permease involved in the transport of L-arabinose. The DNA sequence of araC revealed that its putative product is very similar to a number of bacterial negative regulators (the GalR-LacI family). However, a helix-turn-helix motif was identified in the N-terminal region by its identity to the consensus signature sequence of another group of repressors, the GntR family. The lack of similarity between the predicted primary structure of the product encoded by the B. subtilis regulatory gene and the AraC regulator from E. coli and the apparently different modes of action of these two proteins lead us to propose a new name, araR, for this gene. The araR gene is monocistronic, and the promoter region contains -10 and -35 regions (as determined by primer extension analysis) similar to those recognized by RNA polymerase containing the major vegetative cell sigma factor sigmaA. An insertion-deletion mutation in the araR gene leads to constitutive expression of the L-arabinose metabolic operon. We demonstrate that the araR gene codes for a negative regulator of the ara operon and that the expression of araR is repressed by its own product.


Assuntos
Arabinose/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Genes Reguladores , Genes araC , Proteínas Repressoras/genética , Fatores de Transcrição , Sequência de Aminoácidos , Fator de Transcrição AraC , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Sequência de Bases , Clonagem Molecular , Escherichia coli/genética , Proteínas de Escherichia coli , Genes Bacterianos , Dados de Sequência Molecular , Mutação , Óperon , RNA Bacteriano/genética , RNA Mensageiro/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Transformação Bacteriana
5.
Antonie Van Leeuwenhoek ; 68(2): 101-10, 1995 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-8546449

RESUMO

The taxonomy of the yeast genus Metschnikowia has undergone profound changes over the past century. Major developments, from the capacity to obtain pure cultures of parasitic species to progress associated with the extensive use of molecular biology tools in yeast systematics, are briefly reviewed. Results from past work and new data are combined to evaluate evolutionary relationships and clarify the classification of both terrestrial and aquatic species. Recent physiological studies, including the utilization of non-conventional carbon and nitrogen sources, and characteristics like lipolytic activity and maximum temperatures for growth, are presented. The assessment of the genetic diversity within the genus by restriction analysis of the mitochondrial DNA and by the production of specific DNA probes has been explored. The results indicate the potential application of the latter in rapid identification procedures.


Assuntos
Saccharomycetales/genética , Leveduras/genética , Evolução Biológica , Sondas de DNA , DNA Fúngico/análise , DNA Fúngico/genética , DNA Mitocondrial/análise , DNA Mitocondrial/genética , Metabolismo Energético , Técnicas de Tipagem Micológica , Fenótipo , Polimorfismo de Fragmento de Restrição , Saccharomycetales/classificação , Saccharomycetales/citologia , Especificidade da Espécie , Leveduras/classificação , Leveduras/citologia
6.
Yeast ; 7(2): 167-72, 1991 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-2063626

RESUMO

To test whether DNA probes derived from ribosomal DNA spacer sequences are suitable for rapid and species-specific yeast identification, a pilot study was undertaken. A 7.7 kb entire ribosomal DNA unit of the type strain of Metschnikowia reukaufii was isolated, cloned and mapped. A 0.65 kb BamHI-HpaI fragment containing non-transcribed spacer sequences was amplified and selected for testing as a 32P hybridization probe with total DNA from the type strains of M. reukaufii, M. pulcherrima, M. lunata, M. bicuspidata, M. australis, M. zobellii, M. krissii, five other strains identified as M. reukaufii and strains of Schizosaccharomyces pombe, Hansenula canadensis, Saccharomyces cerevisiae and Yarrowia lipolytica. The probe hybridized exclusively with DNA from the type strain and four other strains of M. reukaufii. DNA from one strain labelled M. reukaufii did not hybridize with the probe. Subsequent % G + C comparison and DNA-DNA reassociation with the type strain revealed that the non-hybridizing strain does not belong to the species M. reukaufii.


Assuntos
Sondas de DNA , DNA Fúngico/genética , DNA Ribossômico/genética , Saccharomycetales/classificação , Southern Blotting , Clonagem Molecular , Marcadores Genéticos , Hibridização de Ácido Nucleico , Plasmídeos , Mapeamento por Restrição , Saccharomycetales/genética , Saccharomycetales/isolamento & purificação , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Transcrição Gênica/genética
7.
J Bacteriol ; 171(7): 4088-91, 1989 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-2500424

RESUMO

Two recombinant plasmids, pSNL1 and pSNL2, carrying structural genes for L-arabinose utilization were isolated from a Bacillus subtilis gene library. Both plasmids complemented araD mutations in a Rec- B. subtilis strain and in Escherichia coli. Moreover, pSNL1 also complemented araB mutations in both species and efficiently transformed araA Rec+ B. subtilis strains to Ara+. Detailed physical mapping of both plasmids in addition to transformation experiments involving defined restriction fragments from the pSNL1 insert unambiguously determined the gene order to be araD, araB, and araA, an order different from that found in E. coli.


Assuntos
Arabinose/genética , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Genes Bacterianos , Genes , Arabinose/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/isolamento & purificação , Clonagem Molecular , Escherichia coli/genética , Plasmídeos , Recombinação Genética
8.
J Bacteriol ; 170(6): 2855-7, 1988 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-3131313

RESUMO

Constitutive mutants for L-arabinose utilization were isolated from Bacillus subtilis 168T+ and showed resistance to D-fucose, a nonmetabolizable analog of L-arabinose. The mutations that conferred the constitutive phenotype (Arac) were mapped between cysB and hisA. All the mutants showed an isomerase activity which was reduced to 50 to 70% in the presence of L-arabinose and to 10% in the presence of glucose.


Assuntos
Arabinose/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/isolamento & purificação , Bacillus subtilis/metabolismo , Fucose/metabolismo , Isomerases/metabolismo , Mutação , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...