Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(10): 1200, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37700111

RESUMO

Air pollution is one of the leading causes of death from noncommunicable diseases globally, and in Arizona, both mining activities and abandoned agriculture can generate erodible dust. This dust is transported via wind and can carry high amounts of toxic pollutants. Industry-adjacent communities, or "fenceline communities," are generally closer to the pollution sources and are disproportionally impacted by pollution, or in this case, dust. The dust transported from the mine settles into nearby rivers, gardens, and homes, and increases the concentrations of elements beyond their naturally occurring amounts (i.e., enriched). This study was built upon previous community science work in which plant leaves were observed to collect similar concentrations to an accepted dust collection method and illustrated promise for their use as low-cost air quality monitors in these communities. This work investigated the concentration of Na, Mg, Al, K, Ca, Mn, Co, Cu, Zn, Mo, and Ba in dust from the leaves of community-collected backyard and garden plants (foliar dust), as well as if certain variables affected collection efficacy. This assessment evaluated (1) foliar concentration versus surface area for 11 elements, (2) enrichment factor (EF) values and ratios, (3) comparisons of foliar, garden, and yard samples to US Geological Survey data, and (4) what variable significantly affected dust collection efficacy. The EF results indicate that many of the samples were enriched (anthropogenically contaminated) and that the foliar samples were generally more contaminated than the yard and garden soil samples. Leaf surface area was the most influential factor for leaf collection efficiency (p < 0.05) compared to plant family or sampling location. Further studies are needed that standardize the plant species and age and include multiple replicates of the same plant species across partnering communities. This study has demonstrated that foliar dust is enriched in the participating partnering communities and that plant leaf samples can serve as backyard aerosol pollution monitors. Therefore, foliar dust is a viable indicator of outdoor settled dust and aerosol contamination and this is an adoptable monitoring technique for "fenceline communities."


Assuntos
Poluição do Ar , Poeira , Monitoramento Ambiental , Poluição Ambiental , Aerossóis
2.
Expo Health ; 13(3): 517-533, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34532608

RESUMO

Lead exposure has been shown to be harmful to humans in various settings and there are no safe levels of blood lead in children. At an Alternative Superfund site in Hayden-Winkelman, Arizona, with an active copper smelter and concentrator, lead exceedances in air and soil have been measured in the past 20 years. In this work, the U.S. Environmental Protection Agency's Integrated Exposure Uptake Biokinetic (IEUBK) model was used to estimate Hayden-Winkelman children's (age 6 months-7 years) blood lead levels (BLLs) using site-specific lead concentrations measured in indoor and outdoor air, soil, indoor dust, and drinking water. Values used by a state agency's airborne lead risk forecast program were also evaluated to determine whether their forecasting program is useful in protecting children's public health. Using site-specific values in the model, the results demonstrated that lead ingested via indoor dust was the major contributor to children's BLLs. In addition, the output of the IEUBK model overestimated actual BLLs of children sampled in the community. The IEUBK model was particularly sensitive to high indoor dust levels, and these site-specific measures increased modeled BLL values. This finding is of significance as the IEUBK model is used worldwide in communities with industrial contamination. This study confirmed that the chief contributor to lead exposure in children is household dust. Thus, for lead exposure risk reduction, agencies working at Superfund sites should focus efforts on decontaminating outdoor soil and dust and indoor lead decontamination.

3.
Data Brief ; 29: 105050, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32055651

RESUMO

Metal(loid) contamination may pose an increased risk of exposure to children residing near legacy and active resource extraction sites. Children may be exposed to arsenic, cadmium, and/or lead by ingestion and/or inhalation while engaging in school or home outdoor activities via environmental media including water, soil, dust, and locally grown produce. It is thus critical to collect site-specific data to best assess these risks. This data article provides gastric and lung in-vitro bioaccessibility assay (IVBA) data, as well as environmental monitoring data for water, soil, dust, and garden produce collected from preschools (N = 4) in mining communities throughout Nevada County, California in 2018. Arsenic, cadmium, and lead concentrations in the aforementioned media and synthetic gastric and lung fluids were measured by inductively coupled plasma-mass spectrometry (ICP-MS). This dataset provides useful metal(loid) concentrations for future risk assessments for similar settings.

4.
Sci Total Environ ; 718: 134639, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31843310

RESUMO

Children residing in mining towns are potentially disproportionately exposed to metal(loid)s via ingestion and dust inhalation, thus, increasing their exposure when engaging in school or home gardening or playing outside. This citizen science study assessed preschool children's potential arsenic (As), cadmium (Cd), and lead (Pb) exposure via locally grown produce, water, incidental soil ingestion, and dust inhalation at four sites. Participants were trained to properly collect water, soil, and vegetable samples from their preschools in Nevada County, California. As, Cd, and Pb concentrations in irrigation sources did not exceed the U.S. EPA's maximum contaminant and action levels. In general, garden and playground As and Pb soil concentrations exceeded the U.S. EPA Regional Screening Level, CalEPA Human Health Screening Level, and California Department of Toxic Substances Control Screening Level. In contrast, all Cd concentrations were below these recommended screening levels. Dust samples (<10 µm diameter) were generated from surface garden and playground soil collected at the preschools by a technique that simulated windblown dust. Soil and dust samples were then analyzed by in-vitro bioaccessibility assays using synthetic lung and gastric fluids to estimate the bioaccessible fraction of As, Cd, and Pb in the body. Metal(loid) exposure via grown produce revealed that lettuce, carrot, and cabbage grown in the preschool gardens accumulated a higher concentration of metal(loid) than those store-bought nation-wide. None of the vegetables exceeded the respective recommendation maximum levels for Cd and Pb set by the World Health Organization Codex Alimentarius Commission. The results of this study indicate that consumption of preschool-grown produce and incidental soil ingestion were major contributors to preschool-aged children's exposure to As, Cd, and Pb. Traditionally, this level of site- and age-specific assessment and analyses does not occur at contaminated sites. The results of this holistic risk assessment can inform future risk assessment and public health interventions related to childhood metal(loid) exposures.


Assuntos
Jardinagem , California , Criança , Pré-Escolar , Cidades , Humanos , Lactente , Metais , Medição de Risco , Poluentes do Solo
5.
Geohealth ; 2(4): 118-138, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30338309

RESUMO

Environmental contamination from legacy mine-waste deposits is a persistent problem due to the long history of hard-rock mining. Sulfide ore deposits can contain elevated levels of toxic metal(loid)s that, when mobilized by weathering upon O2 and H2O infusion, can result in groundwater contamination. Dry-climate and lack of vegetative cover result in near-surface pedogenic processes that produce fine-particulate secondary minerals that can be translocated as geo-dusts leading to ingestion or inhalation exposure in nearby communities. In this study, in vitro bioassays were combined with synchrotron-based x-ray spectroscopy and diffraction to determine the potential risk for toxic element release from dust (PM10) samples into biofluid simulants. PM10 were isolated from across the oxidative reaction front in the top meter of tailings subjected to 50 years of weathering under semi-arid climate, and introduced to synthetic gastric- and alveolar-fluids. Aqueous concentrations were measured as a function of reaction time to determine release kinetics. X-ray diffraction and absorption spectroscopy analyses were performed to assess associated changes in mineralogy and elemental speciation. In vitro bioaccessibility of arsenic and lead was highest in less-weathered tailings samples (80-110 cm) and lowest in samples from the sub-oxic transition zone (40-52 cm). Conversely, zinc release to biofluids was greatest in the highly-weathered near-surface tailings. Results indicate that bioaccessibility of As and Pb was controlled by (i) the solubility of Fe2+-bearing solids, (ii) the prevalence of soluble SO4 2-, and (iii) the presence of poorly-crystalline Fe(III) oxide sorbents, whereas Zn bioaccessibility was controlled by the pH-dependent solubility of the stable solid phase.

6.
Environ Sci Technol ; 52(10): 5851-5858, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29701964

RESUMO

Environmental and health risk concerns relating to airborne particles from mining operations have focused primarily on smelting activities. However, there are only three active copper smelters and less than a dozen smelters for other metals compared to an estimated 500000 abandoned and unreclaimed hard rock mine tailings in the US that have the potential to generate dust. The problem can also extend to modern tailings impoundments, which may take decades to build and remain barren for the duration before subsequent reclamation. We examined the impact of vegetation cover and irrigation on dust emissions and metal(loid) transport from mine tailings during a phytoremediation field trial at the Iron King Mine and Humboldt Smelter Superfund (IKMHSS) site. Measurements of horizontal dust flux following phytoremediation reveals that vegetated plots with 16% and 32% canopy cover enabled an average dust deposition of 371.7 and 606.1 g m-2 y-1, respectively, in comparison to the control treatment which emitted dust at an average rate of 2323 g m-2 y-1. Horizontal dust flux and dust emissions from the vegetated field plots are comparable to emission rates in undisturbed grasslands. Further, phytoremediation was effective at reducing the concentration of fine particulates, including PM1, PM2.5, and PM4, which represent the airborne particulates with the greatest health risks and the greatest potential for long-distance transport. This study demonstrates that phytoremediation can substantially decrease dust emissions as well as the transport of windblown contaminants from mine tailings.


Assuntos
Poeira , Mineração , Biodegradação Ambiental , Cobre , Metais
7.
Environ Sci Technol ; 50(21): 11706-11713, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27700056

RESUMO

This study examines size-resolved physicochemical data for particles sampled near mining and smelting operations and a background urban site in Arizona with a focus on how hygroscopic growth impacts particle deposition behavior. Particles with aerodynamic diameters between 0.056-18 µm were collected at three sites: (i) an active smelter operation in Hayden, AZ, (ii) a legacy mining site with extensive mine tailings in Iron King, AZ, and (iii) an urban site, inner-city Tucson, AZ. Mass size distributions of As and Pb exhibit bimodal profiles with a dominant peak between 0.32 and 0.56 µm and a smaller mode in the coarse range (>3 µm). The hygroscopicity profile did not exhibit the same peaks owing to dependence on other chemical constituents. Submicrometer particles were generally more hygroscopic than supermicrometer ones at all three sites with finite water-uptake ability at all sites and particle sizes examined. Model calculations at a relative humidity of 99.5% reveal significant respiratory system particle deposition enhancements at sizes with the largest concentrations of toxic contaminants. Between dry diameters of 0.32 and 0.56 µm, for instance, ICRP and MPPD models predict deposition fraction enhancements of 171%-261% and 33%-63%, respectively, at the three sites.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis , Mineração , Tamanho da Partícula , Sistema Respiratório
8.
Chemosphere ; 161: 349-357, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27448315

RESUMO

Hydrogen peroxide UV photolysis is among the most widely used advanced oxidation processes (AOPs) for the destruction of trace organics in waters destined for reuse. Previous kinetic models of hydrogen peroxide photolysis focus on the dynamics of hydroxyl radical production and consumption, as well as the reaction of the target organic with hydroxyl radicals. However, the rate of target destruction may also be affected by radical scavenging by reaction products. In this work, we build a predictive kinetic model for the destruction of p-cresol by hydrogen peroxide photolysis based on a complete reaction mechanism that includes reactions of intermediates with hydroxyl radicals. The results show that development of a predictive kinetic model to evaluate process performance requires consideration of the complete reaction mechanism, including reactions of intermediates with hydroxyl radicals.


Assuntos
Cresóis/química , Peróxido de Hidrogênio/química , Radical Hidroxila/química , Radical Hidroxila/efeitos da radiação , Raios Ultravioleta , Poluentes Químicos da Água/química , Cinética , Modelos Químicos , Oxirredução , Fotólise , Purificação da Água/métodos
10.
J Aerosol Sci ; 95: 54-66, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26949268

RESUMO

This work presents fluid flow and particle trajectory simulation studies to determine the aspiration efficiency of a horizontally oriented occupational air sampler using computational fluid dynamics (CFD). Grid adaption and manual scaling of the grids were applied to two sampler prototypes based on a 37-mm cassette. The standard k-ε model was used to simulate the turbulent air flow and a second order streamline-upwind discretization scheme was used to stabilize convective terms of the Navier-Stokes equations. Successively scaled grids for each configuration were created manually and by means of grid adaption using the velocity gradient in the main flow direction. Solutions were verified to assess iterative convergence, grid independence and monotonic convergence. Particle aspiration efficiencies determined for both prototype samplers were undistinguishable, indicating that the porous filter does not play a noticeable role in particle aspiration. Results conclude that grid adaption is a powerful tool that allows to refine specific regions that require lots of detail and therefore better resolve flow detail. It was verified that adaptive grids provided a higher number of locations with monotonic convergence than the manual grids and required the least computational effort.

11.
Anal Chem ; 87(23): 11746-54, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26558486

RESUMO

Polymer-fluid interfaces are used widely in a variety of applications, including separations, which require exposure of the polymer to dynamic flow conditions. Despite the ubiquity of such interfaces, the importance of convective mass transport within the near-interface region of a polymer is a fundamental process that is still poorly defined. As a step toward better defining mass transport behavior within the near-interface portion of a polymer, in this work, a new application of a spectroscopic method based on the combination of Förster resonance energy transfer (FRET) and total internal reflectance fluorescence microscopy (TIRFM) is reported that allows quantification of the penetration depth of a laminar flow field (i.e., the slip length) in a densely grafted, thin poly(N-isopropylacrylamide) (pNIPAM) film as a model polymer system. Specifically, decay curves from FRET of an acceptor with a donor attached at the substrate surface are fit to a combined Taylor-Aris-Fickian mass transport model to extract apparent linear diffusion coefficients of acceptor molecules for different flow rates. Apparent diffusion coefficients range from 1.9 × 10(-12) to 9.1 × 10(-12) cm(2)/s for near-surface flow linear velocities ranging from 192 to 2952 µm/s. This increase in apparent diffusion coefficient with fluid flow rate suggests increasing contributions from convective mass transport that are indicative of flow field penetration into the polymer film. The depth of penetration of the flow field is estimated to range from ∼6% of the polymer film thickness in a good solvent at ∼192 µm/s to ∼60% of the film thickness at ∼2952 µm/s. Thus, flow field penetration into polymer thin films, with its concomitant contributions from convective mass transport within the near-interface region of the polymer, is demonstrated and quantified experimentally.

12.
Sci Total Environ ; 518-519: 479-90, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25777953

RESUMO

Trace organic compounds (TOrCs) in municipal wastewater effluents that are discharged to streams are of potential concern to ecosystem and human health. This study examined the fate of a suite of TOrCs and estrogenic activity in water and sediments in an effluent-dependent stream in Tucson, Arizona. Sampling campaigns were performed during 2011 to 2013 along the Lower Santa Cruz River, where TOrCs and estrogenic activity were measured in aqueous (surface) and solid (riverbed sediment) phases. Some TOrCs, including contributors to estrogenic activity, were rapidly attenuated with distance of travel in the river. Those TOrCs that are not sufficiently attenuated and percolate to ground water have in common low biodegradation probabilities and low octanol-water distribution ratios. Independent experiments showed that attenuation of estrogenic compounds may be due in part to indirect photolysis caused by formation of organic radicals from sunlight absorption. Hydrophobic TOrCs may accumulate in riverbed sediments during dry weather periods, but riverbed sediment quality is periodically affected through storm-related scouring during periods of heavy rainfall and runoff. Taken together, evidence suggests that natural processes can attenuate at least some TOrCs, reducing potential impacts to ecosystem and human health.


Assuntos
Monitoramento Ambiental , Compostos Orgânicos/análise , Rios/química , Águas Residuárias/química , Poluentes Químicos da Água/análise , Arizona , Ecossistema , Eliminação de Resíduos Líquidos
13.
Chemosphere ; 122: 219-226, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25496740

RESUMO

Mining operations are a potential source of metal and metalloid contamination by atmospheric particulate generated from smelting activities, as well as from erosion of mine tailings. In this work, we show how lead isotopes can be used for source apportionment of metal and metalloid contaminants from the site of an active copper mine. Analysis of atmospheric aerosol shows two distinct isotopic signatures: one prevalent in fine particles (<1µm aerodynamic diameter) while the other corresponds to coarse particles as well as particles in all size ranges from a nearby urban environment. The lead isotopic ratios found in the fine particles are equal to those of the mine that provides the ore to the smelter. Topsoil samples at the mining site show concentrations of Pb and As decreasing with distance from the smelter. Isotopic ratios for the sample closest to the smelter (650m) and from topsoil at all sample locations, extending to more than 1km from the smelter, were similar to those found in fine particles in atmospheric dust. The results validate the use of lead isotope signatures for source apportionment of metal and metalloid contaminants transported by atmospheric particulate.


Assuntos
Poluentes Atmosféricos/análise , Arsênio/análise , Chumbo/análise , Material Particulado/análise , Poluentes do Solo/análise , Aerossóis/análise , Arizona , Cobre , Monitoramento Ambiental/métodos , Isótopos/análise , Mineração
14.
Sci Total Environ ; 487: 82-90, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24769193

RESUMO

Atmospheric particulate have deleterious impacts on human health. Predicting dust and aerosol emission and transport would be helpful to reduce harmful impacts but, despite numerous studies, prediction of dust events and contaminant transport in dust remains challenging. In this work, we show that relative humidity and wind speed are both determinants in atmospheric dust concentration. Observations of atmospheric dust concentrations in Green Valley, AZ, USA, and Juárez, Chihuahua, México, show that PM10 concentrations are not directly correlated with wind speed or relative humidity separately. However, selecting the data for high wind speeds (>4m/s at 10 m elevation), a definite trend is observed between dust concentration and relative humidity: dust concentration increases with relative humidity, reaching a maximum around 25% and it subsequently decreases with relative humidity. Models for dust storm forecasting may be improved by utilizing atmospheric humidity and wind speed as main drivers for dust generation and transport.


Assuntos
Poluentes Atmosféricos/análise , Atmosfera/química , Poeira/análise , Monitoramento Ambiental , Vento , Clima Desértico , Umidade , México , Modelos Químicos
15.
Rev Environ Health ; 29(1-2): 91-4, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24552963

RESUMO

Mining operations are potential sources of airborne particulate metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, due to potential deleterious effects on human health and ecology. Dust emissions and dispersion of contaminants from the Iron King Mine tailings in Dewey-Humboldt, Arizona, a Superfund site, are currently being investigated through in situ field measurements and computational fluid dynamics modeling. These tailings are significantly contaminated with lead and arsenic with an average soil concentration of 1616 and 1420 ppm, respectively. Similar levels of these contaminants have also been measured in soil samples taken from the area surrounding the mine tailings. Using a computational fluid dynamics model, we have been able to model dust transport from the mine tailings to the surrounding region. The model includes a distributed Eulerian model to simulate fine aerosol transport and a Lagrangian approach to model fate and transport of larger particles. In order to improve the accuracy of the dust transport simulations both regional topographical features and local weather patterns have been incorporated into the model simulations.


Assuntos
Poluentes Atmosféricos , Poeira , Mineração , Modelos Químicos , Arizona , Simulação por Computador
16.
Aeolian Res ; 14: 75-83, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25621085

RESUMO

Mining operations are potential sources of airborne particulate metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, due to potential deleterious effects on human health and ecology. Dust emissions and dispersion of dust and aerosol from the Iron King Mine tailings in Dewey-Humboldt, Arizona, a Superfund site, are currently being investigated through in situ field measurements and computational fluid dynamics modeling. These tailings are heavily contaminated with lead and arsenic. Using a computational fluid dynamics model, we model dust transport from the mine tailings to the surrounding region. The model includes gaseous plume dispersion to simulate the transport of the fine aerosols, while individual particle transport is used to track the trajectories of larger particles and to monitor their deposition locations. In order to improve the accuracy of the dust transport simulations, both regional topographical features and local weather patterns have been incorporated into the model simulations. Results show that local topography and wind velocity profiles are the major factors that control deposition.

17.
J Hazard Mater ; 263 Pt 2: 525-32, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24231323

RESUMO

Arsenic Crystallization Technology (ACT) is a potentially eco-friendly, effective technology for stabilization of arsenic-bearing solid residuals (ABSRs). The strategy is to convert ABSRs generated by water treatment facilities into minerals with a high arsenic capacity and long-term stability in mature, municipal solid waste landfills. Candidate minerals considered in this study include scorodite, arsenate hydroxyapatites, ferrous arsenates (symplesite-type minerals), tooeleite, and arsenated-schwertmannite. These minerals were evaluated as to ease of synthesis, applicability to use of iron-based ABSRs as a starting material, and arsenic leachability. The Toxicity Characteristic Leaching Procedure (TCLP) was used for preliminary assessment of candidate mineral leaching. Minerals that passed the TCLP and whose synthesis route was promising were subjected to a more aggressive leaching test using a simulated landfill leachate (SLL) solution. Scorodite and arsenate hydroxyapatites were not considered further because their synthesis conditions were not found to be favorable for general application. Tooeleite and silica-amended tooeleite showed high TCLP arsenic leaching and were also not investigated further. The synthesis process and leaching of ferrous arsenate and arsenated-schwertmannite were promising and of these, arsenated-schwertmannite was most stable during SLL testing. The latter two candidate minerals warrant synthesis optimization and more extensive testing.


Assuntos
Arsênio/química , Eliminação de Resíduos/métodos , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Arseniatos/química , Cristalização , Recuperação e Remediação Ambiental , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Ferro/química , Compostos de Ferro/química , Teste de Materiais , Eliminação de Resíduos/instrumentação , Poluentes do Solo/química , Temperatura , Instalações de Eliminação de Resíduos , Purificação da Água/métodos , Difração de Raios X
18.
Environ Sci Technol ; 46(17): 9473-80, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22852879

RESUMO

Particulate matter emissions near active copper smelters and mine tailings in the southwestern United States pose a potential threat to nearby environments owing to toxic species that can be inhaled and deposited in various regions of the body depending on the composition and size of the particles, which are linked by particle hygroscopic properties. This study reports the first simultaneous measurements of size-resolved chemical and hygroscopic properties of particles next to an active copper smelter and mine tailings by the towns of Hayden and Winkelman in southern Arizona. Size-resolved particulate matter samples were examined with inductively coupled plasma mass spectrometry, ion chromatography, and a humidified tandem differential mobility analyzer. Aerosol particles collected at the measurement site are enriched in metals and metalloids (e.g., arsenic, lead, and cadmium) and water-uptake measurements of aqueous extracts of collected samples indicate that the particle diameter range of particles most enriched with these species (0.18-0.55 µm) overlaps with the most hygroscopic mode at a relative humidity of 90% (0.10-0.32 µm). These measurements have implications for public health, microphysical effects of aerosols, and regional impacts owing to the transport and deposition of contaminated aerosol particles.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/análise , Metaloides/análise , Metais/análise , Material Particulado/química , Arizona , Arsênio/análise , Cádmio/análise , Cobre/química , Saúde Ambiental , Monitoramento Ambiental , Chumbo/análise , Molhabilidade
19.
Sci Total Environ ; 433: 58-73, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22766428

RESUMO

Contaminants can be transported rapidly and over relatively long distances by atmospheric dust and aerosol relative to other media such as water, soil and biota; yet few studies have explicitly evaluated the environmental implications of this pathway, making it a fundamental but understudied transport mechanism. Although there are numerous natural and anthropogenic activities that can increase dust and aerosol emissions and contaminant levels in the environment, mining operations are notable with respect to the quantity of particulates generated, the global extent of area impacted, and the toxicity of contaminants associated with the emissions. Here we review (i) the environmental fate and transport of metals and metalloids in dust and aerosol from mining operations, (ii) current methodologies used to assess contaminant concentrations and particulate emissions, and (iii) the potential health and environmental risks associated with airborne contaminants from mining operations. The review evaluates future research priorities based on the available literature and suggest that there is a particular need to measure and understand the generation, fate and transport of airborne particulates from mining operations, specifically the finer particle fraction. More generally, our findings suggest that mining operations play an important but underappreciated role in the generation of contaminated atmospheric dust and aerosol and the transport of metal and metalloid contaminants, and highlight the need for further research in this area. The role of mining activities in the fate and transport of environmental contaminants may become increasingly important in the coming decades, as climate change and land use are projected to intensify, both of which can substantially increase the potential for dust emissions and transport.


Assuntos
Aerossóis , Poluentes Atmosféricos/análise , Metais/análise , Mineração , Atmosfera , Tamanho da Partícula
20.
Environ Sci Technol ; 46(16): 9055-61, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22827160

RESUMO

The United States Environmental Protection Agency has identified quantification of trichloroethylene (TCE), an industrial solvent, in breast milk as a high priority need for risk assessment. Water and milk samples were collected from 20 households by a lactation consultant in Nogales, Arizona. Separate water samples (including tap, bottled, and vending machine) were collected for all household uses: drinking, bathing, cooking, and laundry. A risk factor questionnaire was administered. Liquid-liquid extraction with diethyl ether was followed by GC-MS for TCE quantification in water. Breast milk underwent homogenization, lipid hydrolysis, and centrifugation prior to extraction. The limit of detection was 1.5 ng/mL. TCE was detected in 7 of 20 mothers' breast milk samples. The maximum concentration was 6 ng/mL. TCE concentration in breast milk was significantly correlated with the concentration in water used for bathing (ρ = 0.59, p = 0.008). Detection of TCE in breast milk was more likely if the infant had a body mass index <14 (RR = 5.2, p = 0.02). Based on average breast milk consumption, TCE intake for 5% of the infants may exceed the proposed U.S. EPA Reference Dose. Results of this exploratory study warrant more in depth studies to understand risk of TCE exposures from breast milk intake.


Assuntos
Leite Humano/química , Tricloroetileno/análise , Abastecimento de Água/análise , Adulto , Arizona , Feminino , Humanos , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...