Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38888173

RESUMO

CONTEXT: The search for somatic mutations in adrenals resected from primary aldosteronism (PA) patients is being performed by Sanger sequencing, often implemented with immunohistochemistry (IHC)-guidance focused on aldosterone-producing (CYP11B2-positive) areas. OBJECTIVE: To investigate the impact of double IHC for CYP11B1 and CYP11B2 on Sanger and next generation sequencing (NGS). METHODS: We investigated 127 consecutive adrenal aldosterone producing adenoma from consenting surgically cured PA patients using double IHC for CYP11B1 and CYP11B2, Sanger sequencing and NGS. RESULTS: Double IHC for CYP11B2 and CYP11B1 revealed 3 distinct patterns: CYP11B2-positive adenoma (pattern 1), mixed CYP11B1/CYP11B2-positive adenoma (pattern 2), and adrenals with multiple small CYP11B2-positive nodules (pattern 3). Sanger sequencing allowed detection of KCNJ5 mutations in 44% of the adrenals; NGS revealed such mutations in 10% of those negative at Sanger and additional mutations in 61% of the cases. Importantly the rate of KCNJ5 mutations differed across patterns: 17.8% in pattern 1, 71.4% in pattern 2, and 10.7% in pattern 3 (χ2=22.492, p<0.001). CONCLUSIONS: NGS allowed detection of mutations in many adrenals that tested negative at Sanger sequencing. Moreover, the different distribution of KCNJ5 mutations across IHC patterns indicates that IHC-guided sequencing protocols selecting CYP11B2-positive areas could furnish results that might not be representative of the entire mutational status of the excised adrenal, which is important at a time when KCNJ5 mutations are suggested to drive management of APA patient.

2.
J Steroid Biochem Mol Biol ; 243: 106568, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866188

RESUMO

The mineralocorticoid receptor (MR, NR3C2) mediates ion and water homeostasis in epithelial cells of the distal nephron and other tissues. Aldosterone, the prototypical mineralocorticoid, regulates electrolyte and fluid balance. Cortisol binds to MR with equal affinity to aldosterone, but many MR-expressing tissues inactivate cortisol to cortisone via 11ß-hydroxysteroid dehydrogenase type 2 (HSD11B2). Dysregulated MR activation contributes to direct cardiovascular tissue insults. Besides aldosterone and cortisol, a variety of MR agonists and/or HSD11B2 inhibitors are putative players in the pathophysiology of low-renin hypertension (LRH), and cardiovascular and metabolic pathology. We developed an in vitro human MR (hMR) model, to facilitate screening for MR agonists, antagonists, and HSD11B2 inhibitors. The CV1 monkey kidney cells were transduced with lentivirus to stably express hMR and an MR-responsive gaussia luciferase gene. Clonal populations of MR-expressing cells (CV1-MRluc) were further transduced to express HSD11B2 (CV1-MRluc-HSD11B2). CV1-MRluc and CV1-MRluc-HSD11B2 cells were treated with aldosterone, cortisol, 11-deoxycorticosterone (DOC), 18-hydroxycorticosterone (18OHB), 18-hydroxycortisol (18OHF), 18-oxocortisol (18oxoF), progesterone, or 17-hydroxyprogesterone (17OHP). In CV1-MRLuc cells, aldosterone and DOC displayed similar potency (EC50: 0.45 nM and 0.30 nM) and maximal response (31- and 23-fold increase from baseline) on hMR; 18oxoF and 18OHB displayed lower potency (19.6 nM and 56.0 nM, respectively) but similar maximal hMR activation (25- and 27-fold increase, respectively); cortisol and corticosterone exhibited higher maximal responses (73- and 52-fold, respectively); 18OHF showed no MR activation. Progesterone and 17OHP inhibited aldosterone-mediated MR activation. In the MRluc-HSD11B2 model, the EC50 of cortisol for MR activation increased from 20 nM (CV1-MRLuc) to ∼2000 nM, while the EC50 for aldosterone remained unchanged. The addition of 18ß-glycyrrhetinic acid (18ß-GA), a HSD11B2 inhibitor, restored the potency of cortisol back to ∼70 nM in CV1-hMRLuc-HSD11B2 cells. Together, these two cell models will facilitate the discovery of novel MR-modulators, informing MR-mediated pathophysiology mechanisms and drug development efforts.

3.
Eur J Endocrinol ; 190(4): G1-G14, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38571460

RESUMO

We describe herein the European Reference Network on Rare Endocrine Conditions clinical practice guideline on diagnosis and management of familial forms of hyperaldosteronism. The guideline panel consisted of 10 experts in primary aldosteronism, endocrine hypertension, paediatric endocrinology, and cardiology as well as a methodologist. A systematic literature search was conducted, and because of the rarity of the condition, most recommendations were based on expert opinion and small patient series. The guideline includes a brief description of the genetics and molecular pathophysiology associated with each condition, the patients to be screened, and how to screen. Diagnostic and treatment approaches for patients with genetically determined diagnosis are presented. The recommendations apply to patients with genetically proven familial hyperaldosteronism and not to families with more than one case of primary aldosteronism without demonstration of a responsible pathogenic variant.


Assuntos
Endocrinologia , Hiperaldosteronismo , Hipertensão , Criança , Humanos , Hiperaldosteronismo/diagnóstico , Hiperaldosteronismo/genética , Hiperaldosteronismo/terapia , Hipertensão/diagnóstico , Hipertensão/genética , Hipertensão/terapia
4.
Hypertens Res ; 47(5): 1362-1371, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38454147

RESUMO

The measurement evolution enabled more accurate evaluation of aldosterone production in hypertensive patients. However, the cut-off values for novel assays have been not sufficiently validated. The present study was undertaken to validate the novel chemiluminescent enzyme immunoassay for aldosterone in conjunction with other methods. Moreover, we also aimed to establish a new cut-off value for primary aldosteronism in the captopril challenge test using the novel assay. First, we collected 390 plasma samples, in which aldosterone levels measured using liquid chromatography-mass spectrometry ranged between 0.18 and 1346 ng/dL. The novel chemiluminescent enzyme immunoassay showed identical correlation of plasma aldosterone with liquid chromatography-mass spectrometry, in contrast to conventional radioimmunoassay. Further, we enrolled 299 and 39 patients with primary aldosteronism and essential hypertension, respectively. Plasma aldosterone concentrations measured using the novel assay were lower than those measured by radioimmunoassay, which resulted in decreased aldosterone-to-renin ratios. Subsequently, positive results of the captopril challenge test based on radioimmunoassay turned into "negative" based on the novel assay in 45% patients with primary aldosteronism, using the conventional cut-off value (aldosterone-to-renin activity ratio > 20 ng/dL per ng/mL/h). Receiver operating characteristic curve analysis demonstrated that aldosterone-to-renin activity ratios > 8.2 ng/dL per ng/mL/h in the novel assay was compatible with the conventional diagnosis (sensitivity, 0.874; specificity, 0.980). Our study indicates the great measurement accuracy of the novel chemiluminescent enzyme immunoassay for aldosterone, and the importance of measurement-adjusted cut-offs in the diagnosis of primary aldosteronism.


Assuntos
Aldosterona , Captopril , Hiperaldosteronismo , Medições Luminescentes , Humanos , Hiperaldosteronismo/diagnóstico , Hiperaldosteronismo/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Aldosterona/sangue , Estudos Retrospectivos , Adulto , Idoso , Medições Luminescentes/métodos , Técnicas Imunoenzimáticas/métodos , Hipertensão/sangue , Hipertensão/diagnóstico , Renina/sangue , Estudos de Coortes , Radioimunoensaio
6.
J Am Heart Assoc ; 13(5): e032828, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38420846

RESUMO

BACKGROUND: Myosin phosphatase targeting subunit 2 (MYPT2) is an important subunit of cardiac MLC (myosin light chain) phosphatase, which plays a crucial role in regulating the phosphorylation of MLC to phospho-MLC (p-MLC). A recent study demonstrated mineralocorticoid receptor-related hypertension is associated with RhoA/Rho-associated kinase/MYPT1 signaling upregulation in smooth muscle cells. Our purpose is to investigate the effect of MYPT2 on cardiac function and fibrosis in mineralocorticoid receptor-related hypertension. METHODS AND RESULTS: HL-1 murine cardiomyocytes were incubated with different concentrations or durations of aldosterone. After 24-hour stimulation, aldosterone increased CTGF (connective tissue growth factor) and MYPT2 and decreased p-MLC in a dose-dependent manner. MYPT2 knockdown decreased CTGF. Cardiac-specific MYPT2-knockout (c-MYPT2-/-) mice exhibited decreased type 1 phosphatase catalytic subunit ß and increased p-MLC. A disease model of mouse was induced by subcutaneous aldosterone and 8% NaCl food for 4 weeks after uninephrectomy. Blood pressure elevation and left ventricular hypertrophy were observed in both c-MYPT2-/- and MYPT2+/+ mice, with no difference in heart weights or nuclear localization of mineralocorticoid receptor in cardiomyocytes. However, c-MYPT2-/- mice had higher ejection fraction and fractional shortening on echocardiography after aldosterone treatment. Histopathology revealed less fibrosis, reduced CTGF, and increased p-MLC in c-MYPT2-/- mice. Basal global radial strain and global longitudinal strain were higher in c-MYPT2-/- than in MYPT2+/+ mice. After aldosterone treatment, both global radial strain and global longitudinal strain remained higher in c-MYPT2-/- mice compared with MYPT2+/+ mice. CONCLUSIONS: Cardiac-specific MYPT2 knockout leads to decreased myosin light chain phosphatase and increased p-MLC. MYPT2 deletion prevented cardiac fibrosis and dysfunction in a model of mineralocorticoid receptor-associated hypertension.


Assuntos
Hipertensão , Receptores de Mineralocorticoides , Camundongos , Animais , Fosfatase de Miosina-de-Cadeia-Leve/genética , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Aldosterona/farmacologia , Aldosterona/metabolismo , Hipertensão/genética , Hipertensão/metabolismo , Miócitos Cardíacos/metabolismo , Fosforilação , Fibrose
7.
Endocrinology ; 165(4)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38325289

RESUMO

The mineralocorticoid receptor (MR) is a transcription factor for genes mediating diverse, cell-specific functions, including trophic effects as well as promoting fluid/electrolyte homeostasis. It was reported that in intercalated cells, phosphorylation of the MR at serine 843 (S843) by Unc-51-like kinase (ULK1) inhibits MR activation and that phosphorylation of ULK1 by mechanistic target of rapamycin (mTOR) inactivates ULK1, and thereby prevents MR inactivation. We extended these findings with studies in M1 mouse cortical collecting duct cells stably expressing the rat MR and a reporter gene. Pharmacological inhibition of ULK1 dose-dependently increased ligand-induced MR transactivation, while ULK1 activation had no effect. Pharmacological inhibition of mTOR and CRISPR/gRNA gene knockdown of rapamycin-sensitive adapter protein of mTOR (Raptor) or rapamycin-insensitive companion of mTOR (Rictor) decreased phosphorylated ULK1 and ligand-induced activation of the MR reporter gene, as well as transcription of endogenous MR-target genes. As predicted, ULK1 inhibition had no effect on aldosterone-mediated transcription in M1 cells with the mutated MR-S843A (alanine cannot be phosphorylated). In contrast, mTOR inhibition dose-dependently decreased transcription in the MR-S843A cells, though not as completely as in cells with the wild-type MR-S843. mTOR, Raptor, and Rictor coprecipitated with the MR and addition of aldosterone increased their phosphorylated, active state. These results suggest that mTOR significantly regulates MR activity in at least 2 ways: by suppressing MR inactivation by ULK1, and by a yet ill-defined mechanism that involves direct association with MR. They also provide new insights into the diverse functions of ULK1 and mTOR, 2 key enzymes that monitor the cell's energy status.


Assuntos
Aldosterona , Receptores de Mineralocorticoides , Animais , Camundongos , Ratos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Ligantes , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Complexos Multiproteicos/metabolismo , Fosforilação , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Proteína Regulatória Associada a mTOR , RNA Guia de Sistemas CRISPR-Cas , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo
8.
Mol Cell Endocrinol ; 585: 112176, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341019

RESUMO

Hyperaldosteronism is often associated with inappropriate aldosterone production and aldosterone synthase (Cyp11b2) expression. Normally, Cyp11b2 expression is limited to the adrenal zona glomerulosa (ZG) and regulated by angiotensin II which signals through Gq protein-coupled receptors. As cells migrate inwards, they differentiate into 11ß-hydroxylase-expressing zona fasciculata (ZF) cells lacking Cyp11b2. The mechanism causing ZG-specific aldosterone biosynthesis is still unclear. We investigated the effect of chronic Gq signaling using transgenic mice with a clozapine N-oxide (CNO)-activated human M3 muscarinic receptor (DREADD) coupled to Gq (hM3Dq) that was expressed throughout the adrenal cortex. CNO raised circulating aldosterone in the presence of a high sodium diet with greater response seen in females compared to males. Immunohistochemistry and transcriptomics indicated disrupted zonal Cyp11b2 expression while Wnt signaling remained unchanged. Chronic Gq-DREADD signaling also induced an intra-adrenal RAAS in CNO-treated mice. Chronic Gq signaling disrupted adrenal cortex zonal aldosterone production associated with ZF expression of Cyp11b2.


Assuntos
Córtex Suprarrenal , Hiperaldosteronismo , Masculino , Feminino , Humanos , Camundongos , Animais , Zona Fasciculada , Aldosterona/metabolismo , Córtex Suprarrenal/metabolismo , Zona Glomerulosa/metabolismo , Citocromo P-450 CYP11B2/genética , Via de Sinalização Wnt , Camundongos Transgênicos
9.
JCEM Case Rep ; 1(5): luad100, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37908218

RESUMO

A 54-year-old man with hypertension, type 2 diabetes mellitus, and a history of Merkel cell carcinoma (MCC) of the right thigh presented to the emergency department with a 4-day history of right lower-quadrant abdominal pain associated with constipation and decreased appetite. Workup showed a heterogenous 6-cm right adrenal mass with macroscopic fat. Imaging was suggestive of benign pathology. Hormonal workup for the adrenal nodule led to the diagnosis of Cushing syndrome. The patient underwent a right adrenalectomy for Cushing syndrome with pathology revealing a 6.5-cm adrenocortical adenoma harboring a 2-cm, well-circumscribed neuroendocrine tumor consistent with metastatic MCC. Adrenal collision tumors are exceedingly rare. This case describes a collision tumor that has not previously been identified-a cortisol-producing adrenal adenoma and metastatic MCC.

10.
ISA Trans ; 139: 713-723, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37295999

RESUMO

Different works in literature have reported that nonlinear controllers based on the energy approach are not effective to completely swing-up an inverted pendulum subjected to friction. Most studies trying to solve this issue consider static friction models in the design of controllers. This consideration is mainly because the stability proof of the system with dynamic friction in closed-loop is difficult. Hence, this paper presents a nonlinear controller with friction compensation to swing-up a Furuta pendulum with dynamic friction. With this aim, we consider that only the active joint of the system is subjected to friction, which is represented via a dynamic model, namely, the Dahl model. We first present Furuta Pendulum dynamic model with dynamic friction. Then, by slightly modifying an energy-based controller that has been previously reported in literature and by including friction compensation, we propose a nonlinear controller that allows to swing-up completely a Furuta pendulum subjected to friction. The unmeasurable friction state is estimated through a nonlinear observer and a stability analysis of the closed-loop system is accomplished with the direct Lyapunov method. Finally, successful experimental results are presented for a Furuta pendulum prototype built by authors. This shows the effectiveness of the proposed controller in achieving a complete swing-up of the Furuta pendulum, in a time feasible for experimental implementation, and ensuring closed-loop stability.

11.
Exp Clin Endocrinol Diabetes ; 131(7-08): 386-393, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36918165

RESUMO

The initial isolation of adrenal steroids from large quantities of animal adrenals resulted in an amorphous fraction resistant to crystallization and identification and had potent effects on electrolyte transport. Aldosterone was eventually isolated and identified in the fraction and was soon shown to cause hypertension when in excess. The autonomous and excessive production of aldosterone, primary aldosteronism, is the most common cause of secondary hypertension. Aldosterone is metabolized in the liver and kidney, and its metabolites are conjugated with glucuronic acid for excretion. The most common liver metabolite is 3α,5ß-tetrahydroaldosterone-3-glucuronide, while that of the kidney is aldosterone-18-oxo-glucuronide. In terms of their value, especially the aldosterone-18-oxo-glucuronide, is commonly used for the diagnosis of primary aldosteronism because they provide an integrated value of the total daily production of aldosterone. Conversion of aldosterone to 18-oxo-glucuronide is impeded by drugs, like some common non-steroidal anti-inflammatory drugs that compete for UDP-glucuronosyltransferase-2B7, the most important glucuronosyltransferase for aldosterone metabolism. Tetrahydroaldosterone is the most abundant metabolite and the most reliable for the diagnosis of primary aldosteronism, but it is not commonly measured.


Assuntos
Hiperaldosteronismo , Hipertensão , Animais , Aldosterona/metabolismo , Glucuronídeos , Hipertensão/etiologia , Hiperaldosteronismo/diagnóstico , Hiperaldosteronismo/metabolismo , Glucuronosiltransferase
12.
J Steroid Biochem Mol Biol ; 230: 106291, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36921907

RESUMO

The search for mineralocorticoids to explain some cases of low renin hypertension with suppressed aldosterone levels led to the isolation of the abundant steroid 18-hydroxycortisol in human urine. 18-Hydroxycortisol proved to be inactive, but because of its similarity to precursors for the synthesis of aldosterone, bullfrog adrenals were incubated with cortisol, resulting in the discovery of 18-oxocortisol which is structurally similar to aldosterone, but with a 17α-hydroxy group like cortisol. 18-Oxocortisol is a weak mineralocorticoid. Its synthesis occurs primarily in the zona glomerulosa where co-expression of the CYP11B2 (aldosterone synthase) and the CYP17A1 (17α-hydroxylase) occurs in a variable number of cells. The clinical value of the measurement of 18-oxocortisol is that it serves to distinguish subtypes of primary aldosteronism. It is significantly elevated in patients with aldosterone-producing adenomas in comparison to those with idiopathic bilateral hyperaldosteronism and helps predict the type of somatic mutation in the aldosterone-producing adenomas, as it is higher in those with KCNJ5 mutations compared to other gene mutations.


Assuntos
Adenoma , Hiperaldosteronismo , Humanos , Hidrocortisona , Aldosterona , Hiperaldosteronismo/genética , Mineralocorticoides , Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética
14.
Clin Chem ; 69(2): 149-159, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36544353

RESUMO

BACKGROUND: Recent advances in omics techniques have allowed detailed genetic characterization of cortisol-producing adrenal adenoma (CPA). In contrast, the pathophysiology of CPAs has not been elucidated in detail on the level of tumor metabolic alterations. METHODS: The current study conducted a comprehensive mass spectrometry imaging (MSI) map of CPAs in relation to clinical phenotypes and immunohistochemical profiles of steroidogenic enzymes. The study cohort comprised 46 patients with adrenal tumors including CPAs (n 35) and nonfunctional adenomas (n 11). RESULTS: Severity of cortisol hypersecretion was significantly correlated with 29 metabolites (adjusted P 0.05). Adrenal androgens derived from the classic androgen pathway were inversely correlated with both cortisol secretion (rs 0.41, adjusted P 0.035) and CYP11B1 expression (rs 0.77, adjusted P 2.00E-08). The extent of cortisol excess and tumor CYP11B1 expression further correlated with serotonin (rs 0.48 and 0.62, adjusted P 0.008 and 2.41E-05). Tumor size was found to be correlated with abundance of 13 fatty acids (adjusted P 0.05) and negatively associated with 9 polyunsaturated fatty acids including phosphatidic acid 38:8 (rs 0.56, adjusted P 0.009). CONCLUSIONS: MSI reveals novel metabolic links between endocrine function and tumorigenesis, which will further support the understanding of CPA pathophysiology.


Assuntos
Adenoma , Neoplasias do Córtex Suprarrenal , Adenoma Adrenocortical , Humanos , Adenoma Adrenocortical/genética , Adenoma Adrenocortical/metabolismo , Adenoma Adrenocortical/patologia , Neoplasias do Córtex Suprarrenal/metabolismo , Hidrocortisona , Esteroide 11-beta-Hidroxilase/genética
15.
Endocrinology ; 164(1)2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36320101

RESUMO

BACKGROUND: Mammalian target of rapamycin (mTOR) inhibitors suppress adrenal cortical carcinoma cell proliferation and cortisol production; the relationship between mTOR and aldosterone production has not been examined. METHODS: HAC15 cells were incubated with an mTOR activator and several inhibitors including AZD8055 (AZD) in the presence and absence of angiotensin II (AngII). The expression of rapamycin-sensitive adapter protein of mTOR (Raptor) and rapamycin-insensitive companion of mTOR (Rictor), adaptor proteins of mTOR complex 1 and 2, respectively, were studied in the HAC15 cells and deleted by CRISPR/gRNA. RESULTS: The mTOR inhibitors decreased aldosterone induced by AngII. Inhibition of mTOR by AZD significantly suppressed AngII-induced aldosterone and cortisol formation in a dose-dependent manner, whereas the mTOR activator MHY had no effect. AZD did not alter forskolin-induced aldosterone production showing that it is specific to the AngII signaling pathway. AngII-mediated ERK and mTOR activation were suppressed by AZD, along with a concomitant dose-dependent reduction of AngII-induced steroidogenic enzymes including steroidogenic acute regulatory protein, 3ß-hydroxysteroid dehydrogenase-type 2, CYP17A1, and aldosterone synthase protein. Furthermore, mTOR components ribosomal protein S6 kinase (P70S6K) and protein kinase B phosphorylation levels were decreased by AZD. As mTOR exerts its main effects by forming complexes with adaptor proteins Raptor and Rictor, the roles of these individual complexes were studied. We found an increase in the phosphorylation of Raptor and Rictor by AngII and that their CRISPR/gRNA-mediated knockdown significantly attenuated AngII-induced aldosterone and cortisol production. CONCLUSION: mTOR signaling has a critical role in transducing the AngII signal initiating aldosterone and cortisol synthesis in HAC15 cells and that inhibition of mTOR could be a therapeutic option for conditions associated with excessive renin-angiotensin system-mediated steroid synthesis.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Humanos , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Aldosterona/metabolismo , Hidrocortisona/metabolismo , Sirolimo/farmacologia , RNA Guia de Cinetoplastídeos , Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Serina-Treonina Quinases TOR
16.
Front Endocrinol (Lausanne) ; 13: 921449, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051386

RESUMO

Aldosterone-producing adenoma is a rare cause of hypertension in children. Only a limited number of cases of aldosterone-producing adenomas with somatic KCNJ5 gene mutations have been described in children. Blacks are particularly more susceptible to developing long-standing cardiovascular effects of aldosterone-induced severe hypertension. Somatic CACNA1D gene mutations are particularly more prevalent in black males whereas KCNJ5 gene mutations are most frequently present in black females. We present here a novel somatic KCNJ5 p.I157S mutation in an aldosterone-producing adenoma from a 16-year-old black female whose severe drug-resistant hypertension significantly improved following unilateral adrenalectomy. Prompt diagnosis of aldosterone-producing adenoma and early identification of gene mutation would enable appropriate therapy and significantly reduce cardiovascular sequelae.


Assuntos
Adenoma , Neoplasias do Córtex Suprarrenal , Adenoma Adrenocortical , Hiperaldosteronismo , Hipertensão , Adenoma/complicações , Adenoma/genética , Adolescente , Neoplasias do Córtex Suprarrenal/complicações , Neoplasias do Córtex Suprarrenal/genética , Adenoma Adrenocortical/complicações , Adenoma Adrenocortical/genética , Aldosterona , Criança , Feminino , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Humanos , Hiperaldosteronismo/genética , Hipertensão/complicações , Masculino , Mutação
17.
Am J Physiol Cell Physiol ; 323(5): C1512-C1523, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35912993

RESUMO

Hypertension is characterized by increased sodium (Na+) reabsorption along the aldosterone-sensitive distal nephron (ASDN) as well as chronic systemic inflammation. Interleukin-6 (IL-6) is thought to be a mediator of this inflammatory process. Interestingly, increased Na+ reabsorption within the ASDN does not always correlate with increases in aldosterone (Aldo), the primary hormone that modulates Na+ reabsorption via the mineralocorticoid receptor (MR). Thus, understanding how increased ASDN Na+ reabsorption may occur independent of Aldo stimulation is critical. Here, we show that IL-6 can activate the MR by activating Rac1 and stimulating the generation of reactive oxygen species (ROS) with a consequent increase in thiazide-sensitive Na+ uptake. Using an in vitro model of the distal convoluted tubule (DCT2), mDCT15 cells, we observed nuclear translocation of eGFP-tagged MR after IL-6 treatment. To confirm the activation of downstream transcription factors, mDCT15 cells were transfected with mineralocorticoid response element (MRE)-luciferase reporter constructs; then treated with vehicle, Aldo, or IL-6. Aldosterone or IL-6 treatment increased luciferase activity that was reversed with MR antagonist cotreatment, but IL-6 treatment was reversed by Rac1 inhibition or ROS reduction. In both mDCT15 and mpkCCD cells, IL-6 increased amiloride-sensitive transepithelial Na+ current. ROS and IL-6 increased 22Na+ uptake via the thiazide-sensitive sodium chloride cotransporter (NCC). These results are the first to demonstrate that IL-6 can activate the MR resulting in MRE activation and that IL-6 increases NCC-mediated Na+ reabsorption, providing evidence for an alternative mechanism for stimulating ASDN Na+ uptake during conditions where Aldo-mediated MR stimulation may not occur.


Assuntos
Aldosterona , Receptores de Mineralocorticoides , Aldosterona/farmacologia , Interleucina-6 , Espécies Reativas de Oxigênio , Túbulos Renais Distais , Néfrons , Sódio , Tiazidas
18.
J Clin Endocrinol Metab ; 107(9): 2439-2448, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35796577

RESUMO

CONTEXT: The adrenal cortex consists of zona glomerulosa (ZG), fasciculata (ZF), and reticularis. Aldosterone-producing cell clusters (APCCs) that strongly express aldosterone synthase (CYP11B2) are frequently found in adult adrenals and harbor somatic mutations that are also detected in aldosterone-producing adenomas (APAs). Primary aldosteronism is mainly caused by APAs or idiopathic hyperaldosteronism (IHA). We presume that APCCs are causing IHA and are precursors of APAs. However, the gene expression characteristics and especially the development of APCCs are not well understood. OBJECTIVE: This study aimed to analyze the transcriptome of APCCs at single-cell resolution and infer the developmental trajectory. METHODS: Single-cell RNA sequencing (scRNA-seq) of 2 adult adrenals was performed. RESULTS: Immunohistochemical analyses confirmed the 2 adrenals had APCCs. scRNA-seq data of 2928 adrenal cells were obtained and 1765 adrenocortical cells were identified based on unsupervised clustering and the marker gene expression. The adrenocortical cells were divided into 6 clusters, of which 3 clusters (923 cells) were composed of APCC/ZG cells. By further subclustering, the APCC/ZG cells were divided into 3 clusters (clusters C1, C2, and C3), we finally identified APCC cluster (C3) and ZG cluster (C1). Cluster C2 seemed to be ZG-to-ZF transitional cells. RNA velocity analysis inferred the developmental direction from cluster ZG-cluster-C1 to APCC-cluster-C3. The scRNA-seq additionally revealed that many CYP11B2-positive cells were positive for CYP11B1 and/or CYP17A1, which were essential for cortisol but not for aldosterone production. CONCLUSIONS: Our results revealed the gene expression characteristics of APCC at single-cell resolution and show that some ZG cells remodel to APCC.


Assuntos
Adenoma , Neoplasias do Córtex Suprarrenal , Hiperaldosteronismo , Adenoma/metabolismo , Neoplasias do Córtex Suprarrenal/metabolismo , Glândulas Suprarrenais/metabolismo , Adulto , Aldosterona/metabolismo , Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/metabolismo , Humanos , Hiperaldosteronismo/metabolismo , Zona Glomerulosa/metabolismo
19.
Mol Cell Endocrinol ; 555: 111720, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35870737

RESUMO

18-Oxocortisol is the product of the metabolism of 11-deoxycortisol by the mitochondrial enzyme aldosterone synthase (CYP11B2). The traditional concept is that the CYP11B2 is exclusively expressed in zona glomerulosa cells and the 17α-hydroxylase (CYP17A1) enzyme, required to synthesize 11-deoxycortisol, is in the zona fasciculata of the human adrenal. It has been postulated that the substrate for 18-oxocortisol is either cortisol from the circulation or from zona fasciculata cells adjacent to the zona glomerulosa. P-glycoprotein, which is highly expressed in steroidogenic cells of the adrenal gland, efficiently expels cortisol from the cell. Double immunofluorescence staining for the CYP11B2 and CYP17A1 enzymes in 7 human adrenals demonstrated that a highly variable number of cells in different areas of the zona glomerulosa co-expressed both enzymes. In addition, there were a variable number of cells that exclusively expressed the CYP17A1 embedded within the zona glomerulosa surrounded by CYP11B2-expressing cells. 18-Oxocortisol in the media of human adrenocortical HAC15 cells was measured by ELISA after incubation with and without 10 nM of angiotensin II to stimulate CYP11B2 activity, with and without the 3ß-hydroxysteroid dehydrogenase (HSD3B) inhibitor trilostane, and with variable amounts of cortisol or 11-deoxycortisol. Cortisol was a poor substrate, while 11-deoxycortisol was a significant substrate for the synthesis of 18-oxocortisol. These data suggest that the biosynthesis of 18-oxocortisol in the human adrenal is likely catalyzed by co-expression of the two crucial enzymes CYP17A1 and CYP11B2 in a small proportion of cells within the zona glomerulosa. It is also possible that 11-deoxycortisol diffusing from cells expressing only CYP17A1 interspersed with cells expressing the CYP11B2 enzyme may be a paracrine substrate in the synthesis of 18-oxocortisol.


Assuntos
Citocromo P-450 CYP11B2 , Hidrocortisona , Glândulas Suprarrenais , Aldosterona , Cortodoxona , Humanos , Hidrocortisona/análogos & derivados , Zona Glomerulosa
20.
Endocr Relat Cancer ; 29(8): 495-502, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35675123

RESUMO

DNA methylation and demethylation regulate the transcription of genes. DNA methylation-associated gene expression of adrenal steroidogenic enzymes may regulate cortisol production in cortisol-producing adenoma (CPA). We aimed to determine the DNA methylation levels of all genes encoding steroidogenic enzymes involved in CPA. Additionally, the aims were to clarify the DNA methylation-associated gene expression and evaluate the difference of CPA genotype from others using DNA methylation data. Twenty-five adrenal CPA and six nonfunctioning adrenocortical adenoma (NFA) samples were analyzed. RNA sequencing and DNA methylation array were performed. The methylation levels at 118 methylation sites of the genes were investigated, and their methylation and mRNA levels were subsequently integrated. Among all the steroidogenic enzyme genes studied, CYP17A1 gene was mainly found to be hypomethylated in CPA compared to that in NFA, and the Benjamini-Hochberg procedure demonstrated that methylation levels at two sites in the CYP17A1 gene body were statistically significant. PRKACA mutant CPAs predominantly exhibited hypomethylation of CYP17A1 gene compared with the GNAS mutant CPAs. Inverse associations between CYP17A1 methylation in three regions of the gene body and its mRNA levels were observed in the NFAs and CPAs. In applying clustering analysis using CYP17A1 methylation and mRNA levels, CPAs with PRKACA mutation were differentiated from NFAs and CPAs with a GNAS mutation. We demonstrated that CPAs exhibited hypomethylation of the CYP17A1 gene body in CPA, especially in the PRKACA mutant CPAs. Methylation of CYP17A1 gene may influence its transcription levels.


Assuntos
Adenoma , Neoplasias do Córtex Suprarrenal , Adenoma Adrenocortical , Adenoma/genética , Adenoma/metabolismo , Neoplasias do Córtex Suprarrenal/genética , Adenoma Adrenocortical/genética , Adenoma Adrenocortical/metabolismo , Metilação de DNA , Humanos , Hidrocortisona/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...