Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biomolecules ; 13(12)2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38136659

RESUMO

Mitochondria play a key role in cellular functions, including energy production and oxidative stress regulation. For this reason, maintaining mitochondrial homeostasis and proteostasis (homeostasis of the proteome) is essential for cellular health. Therefore, there are different mitochondrial quality control mechanisms, such as mitochondrial biogenesis, mitochondrial dynamics, mitochondrial-derived vesicles (MDVs), mitophagy, or mitochondrial unfolded protein response (mtUPR). The last item is a stress response that occurs when stress is present within mitochondria and, especially, when the accumulation of unfolded and misfolded proteins in the mitochondrial matrix surpasses the folding capacity of the mitochondrion. In response to this, molecular chaperones and proteases as well as the mitochondrial antioxidant system are activated to restore mitochondrial proteostasis and cellular function. In disease contexts, mtUPR modulation holds therapeutic potential by mitigating mitochondrial dysfunction. In particular, in the case of neurodegenerative diseases, such as primary mitochondrial diseases, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic Lateral Sclerosis (ALS), or Friedreich's Ataxia (FA), there is a wealth of evidence demonstrating that the modulation of mtUPR helps to reduce neurodegeneration and its associated symptoms in various cellular and animal models. These findings underscore mtUPR's role as a promising therapeutic target in combating these devastating disorders.


Assuntos
Doenças Mitocondriais , Doenças Neurodegenerativas , Animais , Doenças Neurodegenerativas/metabolismo , Mitocôndrias/metabolismo , Envelhecimento , Resposta a Proteínas não Dobradas
2.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37895830

RESUMO

The term neurodegeneration with brain iron accumulation (NBIA) brings together a broad set of progressive and disabling neurological genetic disorders in which iron is deposited preferentially in certain areas of the brain. Among NBIA disorders, the most frequent subtype is pantothenate kinase-associated neurodegeneration (PKAN) caused by pathologic variants in the PANK2 gene codifying the enzyme pantothenate kinase 2 (PANK2). To date, there are no effective treatments to stop the progression of these diseases. This review discusses the utility of patient-derived cell models as a valuable tool for the identification of pharmacological or natural compounds for implementing polytarget precision medicine in PKAN. Recently, several studies have described that PKAN patient-derived fibroblasts present the main pathological features associated with the disease including intracellular iron overload. Interestingly, treatment of mutant cell cultures with various supplements such as pantothenate, pantethine, vitamin E, omega 3, α-lipoic acid L-carnitine or thiamine, improved all pathophysiological alterations in PKAN fibroblasts with residual expression of the PANK2 enzyme. The information provided by pharmacological screenings in patient-derived cellular models can help optimize therapeutic strategies in individual PKAN patients.

3.
Metabolites ; 13(3)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36984858

RESUMO

Neurodegenerative diseases are characterized by the progressive loss of neurons, synapses, dendrites, and myelin in the central and/or peripheral nervous system. Actual therapeutic options for patients are scarce and merely palliative. Although they affect millions of patients worldwide, the molecular mechanisms underlying these conditions remain unclear. Mitochondrial dysfunction is generally found in neurodegenerative diseases and is believed to be involved in the pathomechanisms of these disorders. Therefore, therapies aiming to improve mitochondrial function are promising approaches for neurodegeneration. Although mitochondrial-targeted treatments are limited, new research findings have unraveled the therapeutic potential of several groups of antibiotics. These drugs possess pleiotropic effects beyond their anti-microbial activity, such as anti-inflammatory or mitochondrial enhancer function. In this review, we will discuss the controversial use of antibiotics as potential therapies in neurodegenerative diseases.

4.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36674998

RESUMO

Mitochondrial dysfunction is a key pathological event in many diseases. Its role in energy production, calcium homeostasis, apoptosis regulation, and reactive oxygen species (ROS) balance render mitochondria essential for cell survival and fitness. However, there are no effective treatments for most primary and secondary mitochondrial diseases to this day. Therefore, new therapeutic approaches, such as the modulation of the mitochondrial unfolded protein response (mtUPR), are being explored. mtUPRs englobe several compensatory processes related to proteostasis and antioxidant system mechanisms. mtUPR activation, through an overcompensation for mild intracellular stress, promotes cell homeostasis and improves lifespan and disease alterations in biological models of mitochondrial dysfunction in age-related diseases, cardiopathies, metabolic disorders, and primary mitochondrial diseases. Although mtUPR activation is a promising therapeutic option for many pathological conditions, its activation could promote tumor progression in cancer patients, and its overactivation could lead to non-desired side effects, such as the increased heteroplasmy of mitochondrial DNA mutations. In this review, we present the most recent data about mtUPR modulation as a therapeutic approach, its role in diseases, and its potential negative consequences in specific pathological situations.


Assuntos
Doenças Mitocondriais , Humanos , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Longevidade , Resposta a Proteínas não Dobradas
5.
Stem Cell Res ; 53: 102338, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34087982

RESUMO

The human iPSC cell lines, PLANFiPS1-Sv4F-1 (RCPFi004-A), PLANFiPS2-Sv4F-1 (RCPFi005-A), PLANFiPS3-Sv4F-1 RCPFi006-A), derived from dermal fibroblast from three patients suffering PLAN (PLA2G6-associated neurodegeneration; MIM 256600) caused by mutations in the PLA2G6 gene, was generated by non-integrative reprogramming technology using OCT3/4, SOX2, CMYC and KLF4 reprogramming factors. The pluripotency was assessed by immunocytochemistry and RT-PCR. Differentiation capacity was verified in vitro. This iPSC line can be further differentiated toward affected cells to better understand molecular mechanisms of disease and pathophysiology.


Assuntos
Células-Tronco Pluripotentes Induzidas , Distrofias Neuroaxonais , Diferenciação Celular , Linhagem Celular , Reprogramação Celular , Fosfolipases A2 do Grupo VI , Humanos , Fator 4 Semelhante a Kruppel , Mutação
6.
Diseases ; 8(4)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202892

RESUMO

Rare diseases are those that have a low prevalence in the population (less than 5 individuals per 10,000 inhabitants). However, infrequent pathologies affect a large number of people, since according to the World Health Organization (WHO), there are about 7000 rare diseases that affect 7% of the world's population. Many patients with rare diseases have suffered the consequences of what is called the diagnostic odyssey, that is, extensive and prolonged serial tests and clinical visits, sometimes for many years, all with the hope of identifying the etiology of their disease. For patients with rare diseases, obtaining the genetic diagnosis can mean the end of the diagnostic odyssey, and the beginning of another, the therapeutic odyssey. This scenario is especially challenging for the scientific community, since more than 90% of rare diseases do not currently have an effective treatment. This therapeutic failure in rare diseases means that new approaches are necessary. Our research group proposes that the use of precision or personalized medicine techniques can be an alternative to find potential therapies in these diseases. To this end, we propose that patients' own cells can be used to carry out personalized pharmacological screening for the identification of potential treatments.

7.
Open Access Rheumatol ; 12: 175-185, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922097

RESUMO

BACKGROUND: Fibromyalgia (FM) is a common chronic pain disease, whose pathogenic mechanism still remains elusive. Oxidative stress markers and impaired bioenergetics homeostasis have been proposed as relevant events in the pathogenesis of the disease. Hence, the aim of the study is to analyse the potential biomarkers of mitochondrial imbalance in FM patients along with coenzyme Q10 (CoQ10) as a possible treatment. METHODS: The symptomatology of patients was recorded with an adaption of the Fibromyalgia Impact Questionnaire (FIQ). Mitochondrial imbalance was tested from blood extraction and serum isolation in 33 patients diagnosed with FM and 30 healthy controls. Western blot and HPLC techniques were performed to study the different parameters. Finally, bioinformatic analysis of machine learning was performed to predict possible associations of results. RESULTS: CoQ10 parameter did not show evidence to be a good marker of the disease, as the values are not significantly different between control and patient groups (Student's t-test, CI 95%). For this reason, the focus of the study changed into the ratio between mitochondrial mass and autophagy levels. The bioinformatics analysis showed a possible association between this ratio and patients' symptomatology. Finally, the effects of coenzyme Q10 as a potential treatment for the disease were different within patients, and its efficacy may be related to the initial mitochondrial status. However, there is no statistical significance due to limitations within the sample size. CONCLUSION: Our study supports the hypothesis that an imbalance in mitochondrial homeostasis is involved in the FM pathogenesis. However, whether the increase in oxidative stress is the result of mitochondrial imbalance or the cause of this disease remains an open question. The measurement of this imbalance might be used as a preliminary biomarker for the diagnosis and follow-up of patients with FM, and even for the evaluation of the effects of the different antioxidants therapies.

8.
Biochim Biophys Acta Mol Cell Res ; 1866(9): 1433-1449, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31195049

RESUMO

Recent evidences highlight the importance of mitochondria-nucleus communication for the clinical phenotype of oxidative phosphorylation (OXPHOS) diseases. However, the participation of small non-coding RNAs (sncRNAs) in this communication has been poorly explored. We asked whether OXPHOS dysfunction alters the production of a new class of sncRNAs, mitochondrial tRNA fragments (mt tRFs), and, if so, whether mt tRFs play a physiological role and their accumulation is controlled by the action of mt tRNA modification enzymes. To address these questions, we used a cybrid model of MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes), an OXPHOS disease mostly caused by mutation m.3243A>G in the mitochondrial tRNALeu(UUR) gene. High-throughput analysis of small-RNA-Seq data indicated that m.3243A>G significantly changed the expression pattern of mt tRFs. A functional analysis of potential mt tRFs targets (performed under the assumption that these tRFs act as miRNAs) indicated an association with processes that involve the most common affected tissues in MELAS. We present evidences that mt tRFs may be biologically relevant, as one of them (mt i-tRF GluUUC), likely produced by the action of the nuclease Dicer and whose levels are Ago2 dependent, down-regulates the expression of mitochondrial pyruvate carrier 1 (MPC1), promoting the build-up of extracellular lactate. Therefore, our study underpins the idea that retrograde signaling from mitochondria is also mediated by mt tRFs. Finally, we show that accumulation of mt i-tRF GluUUC depends on the modification status of mt tRNAs, which is regulated by the action of stress-responsive miRNAs on mt tRNA modification enzymes.


Assuntos
Síndrome MELAS/genética , Síndrome MELAS/metabolismo , Mitocôndrias/metabolismo , Mutação , RNA de Transferência de Leucina/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulação para Baixo , Proteínas de Ligação ao GTP , Regulação da Expressão Gênica , Células HeLa , Humanos , MicroRNAs/genética , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas Mitocondriais , Transportadores de Ácidos Monocarboxílicos/genética , Fosforilação Oxidativa , Pequeno RNA não Traduzido , Proteínas de Ligação a RNA , Transdução de Sinais , Transcriptoma , tRNA Metiltransferases
9.
Pharmacol Res ; 121: 114-121, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28465217

RESUMO

Major Depressive Disorder (MDD, ICD-10: F-33) is a prevalent illness in which the pathogenic mechanism remains elusive. Recently an important role has been attributed to neuro-inflammation, and specifically the NLRP3-inflammasome complex, in the pathogenesis of MDD. This suggests a key role for immunomodulation as a key pathway in the treatment of this disorder. This study evaluates the involvement of nine common antidepressants in the NLRP3-inflammasome complex (fluoxetine, paroxetine, mianserin, mirtazapine, venlafaxine, desvenlafaxine, amitriptyline, imipramine and agomelatine), both in in vitro THP-1 cells stimulated by ATP, and in a stress-induced depressive animal or MDD patients. Antidepressant treatment induced inflammasome inhibition was observed by decreased serum levels of IL-1ß and IL-18 and decrease of NLRP3 and IL-1ß (p17) protein expression. This was also observed under stress-induced depressive behaviour and inflammasome activation in C57Bl/6 mice in vivo. Deletion of key autophagy mediator Atg5 in embryonic fibroblasts (MEF cells) showed an autophagy dependent-NLRP3-inflammasome inhibition by antidepressant treatment. These results suggest the NLRP3-inflammasome could be a biomarker for antidepressant treatment response in MDD patients, and therefore the monitoring of NLRP3 expression levels and/or IL-1ß/IL-18 release may have clinical value in drug selection. Existing evidence suggests an anti-inflammatory effect of some antidepressants shown by IL-1ß, IL-6 and TNF-α. Our data have shown that antidepressant-mediated autophagy may have a role in restoration of certain metabolic and immunological pathways in MDD patients.


Assuntos
Antidepressivos/uso terapêutico , Autofagia/efeitos dos fármacos , Transtorno Depressivo Maior/tratamento farmacológico , Inflamassomos/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Adulto , Animais , Antidepressivos/farmacologia , Linhagem Celular , Transtorno Depressivo Maior/sangue , Transtorno Depressivo Maior/imunologia , Feminino , Humanos , Inflamassomos/imunologia , Interleucina-1beta/sangue , Interleucina-1beta/imunologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia
10.
Genes Cancer ; 7(7-8): 260-277, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27738496

RESUMO

Systemic treatments for hepatocellular carcinoma (HCC) have been largely unsuccessful. This study investigated the antitumoral activity of Amitriptyline, a tricyclic antidepressant, in hepatoma cells. Amitriptyline-induced toxicity involved early mitophagy activation that subsequently switched to apoptosis. Amitriptyline induced mitochondria dysfunction and oxidative stress in HepG2 cells. Amitriptyline specifically inhibited mitochondrial complex III activity that is associated with decreased mitochondrial membrane potential (∆Ψm) and increased reactive oxygen species (ROS) production. Transmission electron microscopy (TEM) studies revealed structurally abnormal mitochondria that were engulfed by double-membrane structures resembling autophagosomes. Consistent with mitophagy activation, fluorescence microscopy analysis showed mitochondrial Parkin recruitment and colocalization of mitochondria with autophagosome protein markers. Pharmacological or genetic inhibition of autophagy exacerbated the deleterious effects of Amitriptyline on hepatoma cells and led to increased apoptosis. These results suggest that mitophagy acts as an initial adaptive mechanism of cell survival. However persistent mitochondrial damage induced extensive and lethal mitophagy, autophagy stress and autophagolysome permeabilization leading eventually to cell death by apoptosis. Amitriptyline also induced cell death in hepatoma cells lines with mutated p53 and non-sense p53 mutation. Our results support the hypothesis that Amitriptyline-induced mitochondrial dysfunction can be a useful therapeutic strategy for HCC treatment, especially in tumors showing p53 mutations and/or resistant to genotoxic treatments.

11.
J Med Genet ; 53(2): 113-22, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26566881

RESUMO

BACKGROUND: Fibromyalgia (FM) is a worldwide diffuse musculoskeletal chronic pain condition that affects up to 5% of the general population. Many symptoms associated with mitochondrial diseases are reported in patients with FM such as exercise intolerance, fatigue, myopathy and mitochondrial dysfunction. In this study, we report a mutation in cytochrome b gene of mitochondrial DNA (mtDNA) in a family with FM with inflammasome complex activation. METHODS: mtDNA from blood cells of five patients with FM were sequenced. We clinically and genetically characterised a patient with FM and family with a new mutation in mtCYB. Mitochondrial mutation phenotypes were determined in skin fibroblasts and transmitochondrial cybrids. RESULTS: After mtDNA sequence in patients with FM, we found a mitochondrial homoplasmic mutation m.15804T>C in the mtCYB gene in a patient and family, which was maternally transmitted. Mutation was observed in several tissues and skin fibroblasts showed a very significant mitochondrial dysfunction and oxidative stress. Increased NLRP3-inflammasome complex activation was observed in blood cells from patient and family. CONCLUSIONS: We propose further studies on mtDNA sequence analysis in patients with FM with evidences for maternal inheritance. The presence of similar symptoms in mitochondrial myopathies could unmask mitochondrial diseases among patients with FM. On the other hand, the inflammasome complex activation by mitochondrial dysfunction could be implicated in the pathophysiology of mitochondrial diseases.


Assuntos
Proteínas de Transporte/genética , Citocromos b/genética , Fibromialgia/genética , Inflamassomos/genética , Mutação , Adulto , Proteínas de Transporte/metabolismo , Citocromos b/química , Citocromos b/metabolismo , DNA Mitocondrial/genética , Feminino , Fibromialgia/patologia , Humanos , Inflamassomos/metabolismo , Masculino , Pessoa de Meia-Idade , Mitocôndrias/genética , Mitocôndrias/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Linhagem
12.
Antioxid Redox Signal ; 24(3): 157-70, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26132721

RESUMO

AIMS: Impairment in adenosine monophosphate-activated protein kinase (AMPK) activity and NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation are associated with several metabolic and inflammatory diseases. In this study, we investigated the role of AMPK/NLRP3 inflammasome axis in the molecular mechanism underlying pain perception. RESULTS: Impairment in AMPK activation induced by compound C or sunitinib, two AMPK inhibitors, provoked hyperalgesia in mice (p<0.001) associated with marked NLRP3 inflammasome protein activation and increased serum levels of interleukin-1ß (IL-1ß) (24.56±0.82 pg/ml) and IL-18 (23.83±1.882 pg/ml) compared with vehicle groups (IL-1ß: 8.15±0.44; IL-18: 4.92±0.4). This effect was rescued by increasing AMPK phosphorylation via metformin treatment (p<0.001), caloric restriction diet (p<0.001), or NLRP3 inflammasome genetic inactivation using NLRP3 knockout (nlrp3(-/-)) mice (p<0.001). Deficient AMPK activation and overactivation of NLRP3 inflammasome axis were also observed in blood cells from patients with fibromyalgia (FM), a prevalent human chronic pain disease. In addition, metformin treatment (200 mg/daily), which increased AMPK activation, restored all biochemical alterations examined by us in blood cells and significantly improved clinical symptoms, such as, pain, fatigue, depression, disturbed sleep, and tender points, in patients with FM. INNOVATION AND CONCLUSIONS: These data suggest that AMPK/NLRP3 inflammasome axis participates in chronic pain and that NLRP3 inflammasome inhibition by AMPK modulation may be a novel therapeutic target to fight against chronic pain and inflammatory diseases as FM.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Proteínas de Transporte/genética , Fibromialgia/genética , Inflamassomos/metabolismo , Dor/genética , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/biossíntese , Adulto , Animais , Proteínas de Transporte/biossíntese , Feminino , Fibromialgia/patologia , Humanos , Indóis/administração & dosagem , Inflamassomos/genética , Interleucina-18/sangue , Interleucina-1beta/sangue , Masculino , Metformina/administração & dosagem , Camundongos , Pessoa de Meia-Idade , Proteína 3 que Contém Domínio de Pirina da Família NLR , Dor/patologia , Percepção da Dor/efeitos dos fármacos , Fosforilação , Pirróis/administração & dosagem , Sunitinibe
13.
Mol Neurobiol ; 53(7): 4874-82, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26362308

RESUMO

Depression is a major public health concern in modern society, yet little is known about the molecular link between this condition and neuroinflammation. The inflammasome complex was recently shown to be implicated in depression. The present study shows the implication of NLRP3 inflammasome in animal model of stress-induced depression. Accordingly, we show here that in the absence of a NLRP3 inflammasome, prolonged stress does not provoke depressive behaviors or microglial activation in mice or dampen hippocampal neurogenesis. Indeed, NLRP3 deletion or inhibition of microglial activation impairs the stress-induced alterations associated with depression. According to these findings in animal model, the inflammasome could be a target for new therapeutic interventions to prevent depression in patients.


Assuntos
Depressão/metabolismo , Inflamassomos/deficiência , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Estresse Psicológico/metabolismo , Animais , Depressão/patologia , Depressão/psicologia , Hipocampo/metabolismo , Hipocampo/patologia , Relações Interpessoais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Estresse Psicológico/patologia , Estresse Psicológico/psicologia
14.
Cytoskeleton (Hoboken) ; 72(9): 435-46, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26382917

RESUMO

Apoptosis is a genetically programmed energy-dependent process of cell demise, characterized by specific morphological and biochemical events in which the activation of caspases has an essential role. During apoptosis the cytoskeleton participates actively in characteristic morphological rearrangements of the dying cell. This reorganisation has been assigned mainly to actinomyosin ring contraction, while microtubule and intermediate filaments are depolymerized at early stages of apoptosis. However, recent reports have showed that microtubules are reformed during the execution phase of apoptosis organizing an apoptotic microtubule network (AMN). AMN is organized behind plasma membrane, forming a cortical structure. Apoptotic microtubules repolymerization takes place in many cell types and under different apoptotic inducers. It has been hypothesized that AMN is critical for maintaining plasma membrane integrity and cell morphology during the execution phase of apoptosis. AMN disorganization leads apoptotic cells to secondary necrosis and the release of potential toxic molecules which can damage neighbor cells and promotes inflammation. Therefore, AMN formation during physiological apoptosis or in pathological apoptosis induced by anti-cancer treatments is essential for tissue homeostasis and the prevention of additional cell damage and inflammation.


Assuntos
Apoptose , Microtúbulos/fisiologia , Actomiosina/química , Trifosfato de Adenosina/química , Caspases/metabolismo , Linhagem Celular Tumoral , Membrana Celular/fisiologia , Permeabilidade da Membrana Celular , Citoesqueleto/fisiologia , Homeostase , Humanos , Inflamação , Filamentos Intermediários/química , Macrófagos/citologia , Polímeros/química
15.
Biogerontology ; 16(5): 599-620, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26105157

RESUMO

Ageing is accompanied by the accumulation of damaged molecules in cells due to the injury produced by external and internal stressors. Among them, reactive oxygen species produced by cell metabolism, inflammation or other enzymatic processes are considered key factors. However, later research has demonstrated that a general mitochondrial dysfunction affecting electron transport chain activity, mitochondrial biogenesis and turnover, apoptosis, etc., seems to be in a central position to explain ageing. This key role is based on several effects from mitochondrial-derived ROS production to the essential maintenance of balanced metabolic activities in old organisms. Several studies have demonstrated caloric restriction, exercise or bioactive compounds mainly found in plants, are able to affect the activity and turnover of mitochondria by increasing biogenesis and mitophagy, especially in postmitotic tissues. Then, it seems that mitochondria are in the centre of metabolic procedures to be modified to lengthen life- or health-span. In this review we show the importance of mitochondria to explain the ageing process in different models or organisms (e.g. yeast, worm, fruitfly and mice). We discuss if the cause of aging is dependent on mitochondrial dysfunction of if the mitochondrial changes observed with age are a consequence of events taking place outside the mitochondrial compartment.


Assuntos
Envelhecimento/metabolismo , Autofagia , Metabolismo Energético , Mitocôndrias/metabolismo , Estresse Oxidativo , Fatores Etários , Envelhecimento/efeitos dos fármacos , Envelhecimento/patologia , Animais , Antioxidantes/uso terapêutico , Autofagia/efeitos dos fármacos , Restrição Calórica , Metabolismo Energético/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Dinâmica Mitocondrial , Modelos Animais , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
16.
Biochim Biophys Acta ; 1852(7): 1257-67, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25779083

RESUMO

Impaired AMPK is associated with a wide spectrum of clinical and pathological conditions, ranging from obesity, altered responses to exercise or metabolic syndrome, to inflammation, disturbed mitochondrial biogenesis and defective response to energy stress. Fibromyalgia (FM) is a world-wide diffused musculoskeletal chronic pain condition that affects up to 5% of the general population and comprises all the above mentioned pathophysiological states. Here, we tested the involvement of AMPK activation in fibroblasts derived from FM patients. AMPK was not phosphorylated in fibroblasts from FM patients and was associated with decreased mitochondrial biogenesis, reduced oxygen consumption, decreased antioxidant enzymes expression levels and mitochondrial dysfunction. However, mtDNA sequencing analysis did not show any important alterations which could justify the mitochondrial defects. AMPK activation in FM fibroblast was impaired in response to moderate oxidative stress. In contrast, AMPK activation by metformin or incubation with serum from caloric restricted mice improved the response to moderate oxidative stress and mitochondrial metabolism in FM fibroblasts. These results suggest that AMPK plays an essential role in FM pathophysiology and could represent the basis for a valuable new therapeutic target/strategy. Furthermore, both metformin and caloric restriction could be an interesting therapeutic approach in FM.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Restrição Calórica , Fibroblastos/metabolismo , Fibromialgia/metabolismo , Metformina/farmacologia , Mitocôndrias/metabolismo , Adulto , Animais , Estudos de Casos e Controles , Células Cultivadas , DNA Mitocondrial/genética , Feminino , Fibroblastos/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo
17.
Mitochondrion ; 21: 69-75, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25662535

RESUMO

Fibromyalgia is a chronic pain syndrome with unknown etiology. Recent studies have shown some evidence demonstrating that oxidative stress, mitochondrial dysfunction and inflammation may have a role in the pathophysiology of fibromyalgia. Despite several skin-related symptoms accompanied by small fiber neuropathy have been studied in FM, these mitochondrial changes have not been yet studied in this tissue. Skin biopsies from patients showed a significant mitochondrial dysfunction with reduced mitochondrial chain activities and bioenergetics levels and increased levels of oxidative stress. These data were related to increased levels of inflammation and correlated with pain, the principal symptom of FM. All these parameters have shown a role in peripheral nerve damage which has been observed in FM as a possible responsible to allodynia. Our findings may support the role of oxidative stress, mitochondrial dysfunction and inflammation as interdependent events in the pathophysiology of FM with a special role in the peripheral alterations.


Assuntos
Fibromialgia/patologia , Fibromialgia/fisiopatologia , Inflamação/patologia , Mitocôndrias/fisiologia , Estresse Oxidativo , Pele/patologia , Adulto , Biópsia , Metabolismo Energético , Feminino , Humanos , Pessoa de Meia-Idade , Dor/fisiopatologia , Nervos Periféricos/patologia
20.
Brain Behav Immun ; 36: 111-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24513871

RESUMO

INTRODUCTION: Major depressive disorder (MDD) is a very prevalent disease which pathogenic mechanism remains elusive. There are some hypotheses and pilot studies suggesting that cytokines may play an important role in MDD. In this respect, we have investigated the role of NLRP3 inflammasome complex in the maturation of caspase-1 and the processing of its substrates, IL-1ß and IL-18, in blood cells from MDD patients. METHODS: Forty MDD patients were selected for this study, twenty without treatments and twenty treated with amitriptyline, a common tricyclic antidepressant. Blood samples from twenty healthy volunteers were included in the study. The inflammasome activation was studied by Western blot and real-time PCR of NLRP3 and caspase 1 and serum levels of IL-1ß and 18. RESULTS: We observed increased gene expression of NLRP3 and caspase-1 in blood cells, and increased serum levels of IL-1ß and IL-18 in non-treated patients. IL-1ß and IL-18 correlated with Beck Depression Inventory (BDI) scores of MDD patients. Interestingly, amitriptyline treatment reduced NLRP3 and caspase-1 gene expression, and IL-1ß and IL-18 serum levels. As it is well established that oxidative stress is associated with NLRP3 inflammasome activation, we next studied mitochondrial ROS and lipid peroxidation (LPO) levels in MDD patients. Increased levels of mitochondrial ROS and LPO were observed in MDD patients, however oxidative damage was higher in MDD patients treated with amitriptyline. CONCLUSIONS: These findings provide new insight into the pathogenesis of MDD and the effects of amitriptyline treatment on NLRP3 inflammasome activation and IL-1ß and IL-18 serum levels.


Assuntos
Proteínas de Transporte/metabolismo , Transtorno Depressivo Maior/sangue , Inflamassomos/metabolismo , Interleucina-18/sangue , Interleucina-1beta/sangue , Leucócitos Mononucleares/metabolismo , Caspase 1/metabolismo , Transtorno Depressivo Maior/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...