Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167570

RESUMO

In this letter, we present a novel technique to increase the sensitivity of optical read-out with large integrated photodiodes (PD). It consists of manufacturing the PD in several pieces, instead of a single device, and connecting a dedicated transimpedance amplifier (TIA) to each of these pieces. The output signals of the TIAs are combined, achieving a higher signal-to-noise ratio than with the traditional approach. This work shows a remarkable improvement in the sensitivity and transimpedance without the need for additional modifications or compensation techniques. As a result, an increase in sensitivity of 7.9 dBm and transimpedance of 8.7 dBΩ for the same bandwidth is achieved when dividing the photodiode read-out into 16 parallel paths. The proposed divide-and-conquer technique can be applied to any TIA design, and it is also independent of the core amplifier structure and fabrication process, which means it is compatible with every technology allowing the integration of PDs.

2.
ACS Nano ; 14(7): 8707-8715, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32441922

RESUMO

We combine top-down and bottom-up nanolithography to optimize the coupling of small molecular spin ensembles to 1.4 GHz on-chip superconducting resonators. Nanoscopic constrictions, fabricated with a focused ion beam at the central transmission line, locally concentrate the microwave magnetic field. Drops of free-radical molecules have been deposited from solution onto the circuits. For the smallest ones, the molecules were delivered at the relevant circuit areas by means of an atomic force microscope. The number of spins Neff effectively coupled to each device was accurately determined combining Scanning Electron and Atomic Force Microscopies. The collective spin-photon coupling constant has been determined for samples with Neff ranging between 2 × 106 and 1012 spins, and for temperatures down to 44 mK. The results show the well-known collective enhancement of the coupling proportional to the square root of Neff. The average coupling of individual spins is enhanced by more than 4 orders of magnitude (from 4 mHz up to above 180 Hz), when the transmission line width is reduced from 400 µm down to 42 nm, and reaches maximum values near 1 kHz for molecules located on the smallest nanoconstrictions.

3.
Sensors (Basel) ; 17(3)2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28335579

RESUMO

In this work, we used a sensor-based True Random Number Generator in order to generate keys for a stream cipher based on a recently published hybrid algorithm mixing Skew Tent Map and a Linear Feedback Shift Register. The stream cipher was implemented and tested in a Field Programmable Gate Array (FPGA) and was able to generate 8-bit width data streams at a clock frequency of 134 MHz, which is fast enough for Gigabit Ethernet applications. An exhaustive cryptanalysis was completed, allowing us to conclude that the system is secure. The stream cipher was compared with other chaotic stream ciphers implemented on similar platforms in terms of area, power consumption, and throughput.

4.
Sensors (Basel) ; 16(6)2016 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-27231915

RESUMO

A monolithically integrated optoelectronic receiver with a low-capacitance on-chip pin photodiode is presented. The receiver is fabricated in a 0.35 µm opto-CMOS process fed at 3.3 V and due to the highly effective integrated pin photodiode it operates at µW. A regenerative latch acting as a sense amplifier leads in addition to a low electrical power consumption. At 400 Mbit/s, sensitivities of -26.0 dBm and -25.5 dBm are achieved, respectively, for λ = 635 nm and λ = 675 nm (BER = 10(-9) ) with an energy efficiency of 2 pJ/bit.

5.
Sensors (Basel) ; 17(1)2016 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-28042830

RESUMO

In this work, we present a capacitance-to-voltage converter (CVC) for capacitive accelerometers based on microelectromechanical systems (MEMS). Based on a fully-differential transimpedance amplifier (TIA), it features a 34-dB transimpedance gain control and over one decade programmable bandwidth, from 75 kHz to 1.2 MHz. The TIA is aimed for low-cost low-power capacitive sensor applications. It has been designed in a standard 0.18-µm CMOS technology and its power consumption is only 54 µW. At the maximum transimpedance configuration, the TIA shows an equivalent input noise of 42 fA/ Hz at 50 kHz, which corresponds to 100 µg/ Hz .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...