Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37836621

RESUMO

A theoretical analysis of the potential inhibition of human sucrase-isomaltase (SI) by flavonoids was carried out with the aim of identifying potential candidates for an alternative treatment of type 2 diabetes. Two compounds from maize silks, maysin and luteolin, were selected to be studied with the structure-based density functional theory (DFT), molecular docking (MDock), and molecular dynamics (MD) approaches. The docking score and MD simulations suggested that the compounds maysin and luteolin presented higher binding affinities in N-terminal sucrase-isomaltase (NtSI) than in C-terminal sucrase-isomaltase (CtSI). The reactivity parameters, such as chemical hardness (η) and chemical potential (µ), of the ligands, as well as of the active site amino acids of the NtSI, were calculated by the meta-GGA M06 functional in combination with the 6-31G(d) basis set. The lower value of chemical hardness calculated for the maysin molecule indicated that this might interact more easily with the active site of NtSI, in comparison with the values of the acarbose and luteolin structures. Additionally, a possible oxidative process was proposed through the quantum chemical calculations of the electronic charge transfer values (∆N) between the active site amino acids of the NtSI and the ligands. In addition, maysin displayed a higher ability to generate more oxidative damage in the NtSI active site. Our results suggest that maysin and luteolin can be used to develop novel α-glucosidase inhibitors via NtSI inhibition.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Zea mays/metabolismo , Simulação de Acoplamento Molecular , Luteolina/farmacologia , Oligo-1,6-Glucosidase/química , Sacarase/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Aminoácidos
2.
Front Chem ; 10: 907556, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991614

RESUMO

New organic molecules containing five different compounds, commonly called p-linkers, located between the triphenylamine units, were theoretically designed and analyzed in order to be proposed as new hole transport materials (HTMs) in perovskite solar cells, in total ten new molecules were analyzed. The electronic, optical and hole transport properties were determined, similarly, the relationship of these properties with their molecular structure was also investigated by Density Functional Theory (DFT) and Density Functional Tight Binding (DFTB) calculations. Eight of the ten analyzed compounds exhibited the main absorption band out of the visible region; therefore these compounds did not present an overlap with the absorption spectra of the typical methylammonium lead iodide (MAPI) hybrid-perovskite. The results showed that the Highest occupied molecular orbital (HOMO) levels of the compounds are higher than the perovskite HOMO level, and in some cases these are even higher than the Spiro-OMeTAD HOMO. The calculated electronic couplings and the reorganization energy values provided useful information in order to determine if the systems were hole or electron transport materials.

3.
Molecules ; 23(7)2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-29966272

RESUMO

Anthocyanins are water-soluble phenolic pigments. However, their poor solubility in lipidic media limits their use. This hurdle can be overcome with the lipophilization of anthocyanins, which consists of adding an aliphatic chain to a hydrophilic compound, in order to increase its solubility in lipids. Still, the unspecific chemical lipophilization of anthocyanin-esters produces molecules with different properties from their precursors. In this work, experimental changes of anthocyanin-esters obtained by chemical lipophilization are investigated in silico aiming specifically at observing their molecular behavior and comparing it with their anthocyanin precursor. Thus, the analysis of delphinidin 3-O-sambubioside and its esters employing Density Functional Theory (DFT) methods, such as the hybrid functional B3LYP in combination with the 6-31++G(d,p) Pople basis set, provides the ground state properties, the local reactivity and the molecular orbitals (MOs) of these compounds. Excited states properties were analyzed by TD-DFT with the B3LYP functional, and the M06 and M06-2X meta-GGA functionals. Local reactivity calculations showed that the electrophilic site for all the anthocyanin-esters was the same as the one for the anthocyanin precursor, however the nucleophilic site changed depending localization of the esterification. TD-DFT results indicate that the place of esterification could change the electronic transitions and the MOs spatial distribution.


Assuntos
Antocianinas/química , Ésteres/química , Modelos Teóricos , Estrutura Molecular , Difração de Raios X
4.
J Mol Model ; 19(9): 3537-42, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23722558

RESUMO

Thiadiazole derivatives have been widely employed in the areas of pharmaceutical, agricultural, industrial, and polymer chemistry. The electronic and molecular structures of thiadiazoles are of interest because they have an equal number of valence electrons and similar molecular structures to thiophenes, which are currently used in the construction of organic solar cells due to their relatively high hole mobilities and good light-harvesting properties. For this reason, the electronic properties of fluorene-1,3,4-thiadiazole oligomers warrant investigation. In the present work, the structure of fluorene-1,3,4-thiadiazole with one thiadiazole unit in the structure was analyzed. This molecule was then expanded until there were 10 thiadiazole units in the structure. The band gap, HOMO and LUMO distributions, and absorption spectrum were analyzed for each molecule. All calculations were performed by applying the B3LYP/6-31G(d) chemical model in the Gaussian 03W and GaussView software packages. The electronic properties were observed to significantly enhance as the number of monomeric units increased, which also caused the gap energy to decrease from 3.51 eV in the oligomer with just one thiadiazole ring to 2.33 eV in the oligomer with 10 units. The HOMO and LUMO regions were well defined and separated for oligomers with at least 5 monomer units of thiadiazole.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA