Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(19): eadj9911, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728406

RESUMO

During cerebral cortex development, excitatory pyramidal neurons (PNs) establish specific projection patterns while receiving inputs from GABAergic inhibitory interneurons (INs). Whether these inhibitory inputs can shape PNs' projection patterns is, however, unknown. While layer 4 (L4) PNs of the primary somatosensory (S1) cortex are all born as long-range callosal projection neurons (CPNs), most of them acquire local connectivity upon activity-dependent elimination of their interhemispheric axons during postnatal development. Here, we demonstrate that precise developmental regulation of inhibition is key for the retraction of S1L4 PNs' callosal projections. Ablation of somatostatin INs leads to premature inhibition from parvalbumin INs onto S1L4 PNs and prevents them from acquiring their barrel-restricted local connectivity pattern. As a result, adult S1L4 PNs retain interhemispheric projections responding to tactile stimuli, and the mice lose whisker-based texture discrimination. Overall, we show that temporally ordered IN activity during development is key to shaping local ipsilateral S1L4 PNs' projection pattern, which is required for fine somatosensory processing.


Assuntos
Neurônios GABAérgicos , Interneurônios , Córtex Somatossensorial , Animais , Interneurônios/metabolismo , Interneurônios/fisiologia , Interneurônios/citologia , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Neurônios GABAérgicos/citologia , Córtex Somatossensorial/fisiologia , Córtex Somatossensorial/metabolismo , Córtex Somatossensorial/citologia , Camundongos , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Parvalbuminas/metabolismo
2.
Small ; 19(49): e2305026, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37596060

RESUMO

Ag2 S nanoparticles (NPs) emerge as a unique system that simultaneously features in vivo near-infrared (NIR) imaging, remote heating, and low toxicity thermal sensing. In this work, their capabilities are extended into the fields of optical coherence tomography (OCT), as contrast agents, and NIR probes in both ex vivo and in vivo experiments in eyeballs. The new dual property for ocular imaging is obtained by the preparation of Ag2 S NPs ensembles with a biocompatible amphiphilic block copolymer. Rather than a classical ligand exchange, where surface traps may arise due to incomplete replacement of surface sites, the use of this polymer provides a protective extra layer that preserves the photoluminescence properties of the NPs, and the procedure allows for the controlled preparation of submicrometric scattering centers. The resulting NPs ensembles show extraordinary colloidal stability with time and biocompatibility, enhancing the contrast in OCT with simultaneous NIR imaging in the second biological window.


Assuntos
Nanopartículas , Tomografia de Coerência Óptica , Meios de Contraste , Polímeros , Imagem Óptica
3.
Adv Exp Med Biol ; 1415: 409-413, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440065

RESUMO

Retinitis pigmentosa (RP) is a genetically heterogeneous disease and the predominant cause of hereditary blindness. Irrespective of the causative mutation, traits common to all forms of RP include photoreceptor dysfunction and death, activation of the retinal glial component, and retinal inflammation. Activation of Toll-like receptors (TLRs) in response to tissue damage is associated with inflammatory processes that contribute to neurodegeneration. We show that retinal expression of the genes Tlr1 to Tlr9 is increased in the rd10 mouse model of RP, with Tlr2 showing the greatest increase (36-fold). Flow cytometry analysis of the retinal myeloid population revealed significant increases in numbers of microglia and infiltrating monocytes and macrophages in rd10 retinas. Furthermore, TLR2 expression, which was restricted to myeloid cells, was increased in rd10 retinal microglia. These observations, together with our previous finding of delayed RP progression following Tlr2 deletion, point to TLR2 as a potential therapeutic target for RP.


Assuntos
Retinose Pigmentar , Receptor 2 Toll-Like , Camundongos , Animais , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Retina/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Células Fotorreceptoras/metabolismo , Macrófagos/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
4.
Cells ; 11(10)2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35626658

RESUMO

Insulin-degrading enzyme (IDE) was named after its role as a proteolytic enzyme of insulin. However, recent findings suggest that IDE is a widely expressed, multitask protein, with both proteolytic and non-proteolytic functions. Here, we characterize the expression of IDE in the mammalian retina in both physiological and pathological conditions. We found that IDE was enriched in cone inner segments. IDE levels were downregulated in the dystrophic retina of several mouse models of retinitis pigmentosa carrying distinct mutations. In rd10 mice, a commonly studied mouse model of retinitis pigmentosa, treatment with an IDE activator (a synthetic peptide analog of preimplantation factor) delayed loss of visual function and preserved photoreceptor cells. Together, these results point to potential novel roles for IDE in retinal physiology and disease, further extending the list of diverse functions attributed to this enzyme.


Assuntos
Insulisina , Retinose Pigmentar , Animais , Modelos Animais de Doenças , Insulisina/genética , Insulisina/metabolismo , Mamíferos , Camundongos , Retina/metabolismo , Retinose Pigmentar/genética
5.
Cell Death Dis ; 13(4): 383, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35444190

RESUMO

Synaptic loss, neuronal death, and circuit remodeling are common features of central nervous system neurodegenerative disorders. Retinitis pigmentosa (RP), the leading cause of inherited blindness, is a group of retinal dystrophies characterized by photoreceptor dysfunction and death. The insulin receptor, a key controller of metabolism, also regulates neuronal survival and synaptic formation, maintenance, and activity. Indeed, deficient insulin receptor signaling has been implicated in several brain neurodegenerative pathologies. We present evidence linking impaired insulin receptor signaling with RP. We describe a selective decrease in the levels of the insulin receptor and its downstream effector phospho-S6 in retinal horizontal cell terminals in the rd10 mouse model of RP, as well as aberrant synapses between rod photoreceptors and the postsynaptic terminals of horizontal and bipolar cells. A gene therapy strategy to induce sustained proinsulin, the insulin precursor, production restored retinal insulin receptor signaling, by increasing S6 phosphorylation, without peripheral metabolic consequences. Moreover, proinsulin preserved photoreceptor synaptic connectivity and prolonged visual function in electroretinogram and optomotor tests. These findings point to a disease-modifying role of insulin receptor and support the therapeutic potential of proinsulin in retinitis pigmentosa.


Assuntos
Proinsulina , Retinose Pigmentar , Animais , Modelos Animais de Doenças , Insulina , Camundongos , Camundongos Endogâmicos C57BL , Proinsulina/farmacologia , Receptor de Insulina , Retinose Pigmentar/patologia , Sinapses/metabolismo
6.
Int J Mol Sci ; 22(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34360582

RESUMO

Although considered a rare retinal dystrophy, retinitis pigmentosa (RP) is the primary cause of hereditary blindness. Given its diverse genetic etiology (>3000 mutations in >60 genes), there is an urgent need for novel treatments that target common features of the disease. TLR2 is a key activator of innate immune response. To examine its role in RP progression we characterized the expression profile of Tlr2 and its adaptor molecules and the consequences of Tlr2 deletion in two genetically distinct models of RP: Pde6brd10/rd10 (rd10) and RhoP23H/+ (P23H/+) mice. In both models, expression levels of Tlr2 and its adaptor molecules increased in parallel with those of the proinflammatory cytokine Il1b. In rd10 mice, deletion of a single Tlr2 allele had no effect on visual function, as evaluated by electroretinography. However, in both RP models, complete elimination of Tlr2 attenuated the loss of visual function and mitigated the loss of photoreceptor cell numbers. In Tlr2 null rd10 mice, we observed decreases in the total number of microglial cells, assessed by flow cytometry, and in the number of microglia infiltrating the photoreceptor layers. Together, these results point to TLR2 as a mutation-independent therapeutic target for RP.


Assuntos
Modelos Animais de Doenças , Deleção de Genes , Microglia/metabolismo , Fármacos Neuroprotetores , Degeneração Retiniana/prevenção & controle , Retinose Pigmentar/complicações , Receptor 2 Toll-Like/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/citologia , Degeneração Retiniana/etiologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia
7.
Adv Exp Med Biol ; 1185: 437-441, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31884651

RESUMO

Enzyme glycogen synthase kinase-3 (GSK-3) is a candidate pharmacological target for the treatment of neurodegenerative diseases of the brain. Given the many molecular, cellular, and functional features shared by the brain and the retina in both physiological and pathological processes, drugs originally designed to treat neurodegenerative diseases of the brain could be useful candidates for the treatment of retinal degenerative pathologies. Moreover, the accessibility of the eye to noninvasive, quantitative diagnostic techniques allows for easier evaluation of the efficacy of candidate therapies in clinical trials. In this chapter, we discuss the potential of GSK-3 inhibitors in the treatment of retinal degeneration.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Degeneração Retiniana/tratamento farmacológico , Encéfalo , Humanos , Doenças Neurodegenerativas , Retina/efeitos dos fármacos , Retina/fisiopatologia
8.
Mol Neurodegener ; 13(1): 19, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29661219

RESUMO

BACKGROUND: Retinitis pigmentosa (RP) is a group of hereditary retinal neurodegenerative conditions characterized by primary dysfunction and death of photoreceptor cells, resulting in visual loss and, eventually, blindness. To date, no effective therapies have been transferred to clinic. Given the diverse genetic etiology of RP, targeting common cellular and molecular retinal alterations has emerged as a potential therapeutic strategy. METHODS: Using the Pde6b rd10/rd10 mouse model of RP, we investigated the effects of daily intraperitoneal administration of VP3.15, a small-molecule heterocyclic GSK-3 inhibitor. Gene expression was analyzed by quantitative PCR and protein expression and phosphorylation by Western blot. Photoreceptor preservation was evaluated by histological analysis and visual function was assessed by electroretinography. RESULTS: In rd10 retinas, increased expression of pro-inflammatory markers and reactive gliosis coincided with the early stages of retinal degeneration. Compared with wild-type controls, GSK-3ß expression (mRNA and protein) remained unchanged during the retinal degeneration period. However, levels of GSK-3ßSer9 and its regulator AktSer473 were increased in rd10 versus wild-type retinas. In vivo administration of VP3.15 reduced photoreceptor cell loss and preserved visual function. This neuroprotective effect was accompanied by a decrease in the expression of neuroinflammatory markers. CONCLUSIONS: These results provide proof of concept of the therapeutic potential of VP3.15 for the treatment of retinal neurodegenerative conditions in general, and RP in particular.


Assuntos
Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Retinose Pigmentar/patologia , Tiadiazóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Retina/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...