Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 562(7727): 434-438, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30297799

RESUMO

Basal cell carcinoma (BCC) is the most frequent cancer in humans and results from constitutive activation of the Hedgehog pathway1. Several Smoothened inhibitors are used to treat Hedgehog-mediated malignancies, including BCC and medulloblastoma2. Vismodegib, a Smoothened inhibitor, leads to BCC shrinkage in the majority of patients with BCC3, but the mechanism by which it mediates BCC regression is unknown. Here we used two genetically engineered mouse models of BCC4 to investigate the mechanisms by which inhibition of Smoothened mediates tumour regression. We found that vismodegib mediates BCC regression by inhibiting a hair follicle-like fate and promoting the differentiation of tumour cells. However, a small population of tumour cells persists and is responsible for tumour relapse following treatment discontinuation, mimicking the situation found in humans5. In both mouse and human BCC, this persisting, slow-cycling tumour population expresses LGR5 and is characterized by active Wnt signalling. Combining Lgr5 lineage ablation or inhibition of Wnt signalling with vismodegib treatment leads to eradication of BCC. Our results show that vismodegib induces tumour regression by promoting tumour differentiation, and demonstrates that the synergy between Wnt and Smoothened inhibitors is a clinically relevant strategy for overcoming tumour relapse in BCC.


Assuntos
Anilidas/farmacologia , Anilidas/uso terapêutico , Carcinoma Basocelular/tratamento farmacológico , Carcinoma Basocelular/patologia , Recidiva Local de Neoplasia , Piridinas/farmacologia , Piridinas/uso terapêutico , Receptores Acoplados a Proteínas G/metabolismo , Anilidas/administração & dosagem , Animais , Carcinoma Basocelular/genética , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Folículo Piloso/citologia , Folículo Piloso/efeitos dos fármacos , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/metabolismo , Humanos , Masculino , Camundongos , Recidiva Local de Neoplasia/prevenção & controle , Receptor Patched-1/deficiência , Piridinas/administração & dosagem , Recidiva , Prevenção Secundária , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Receptor Smoothened/antagonistas & inibidores , Suspensão de Tratamento , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
2.
EMBO Rep ; 19(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29875149

RESUMO

YAP and TAZ are key downstream regulators of the Hippo pathway, regulating cell proliferation and differentiation. YAP and TAZ activation has been reported in different cancer types. However, it remains unclear whether they are required for the initiation of major skin malignancies like basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). Here, we analyze the expression of YAP and TAZ in these skin cancers and evaluate cancer initiation in knockout mouse models. We show that YAP and TAZ are nuclear and highly expressed in different BCC types in both human and mice. Further, we find that cells with nuclear YAP and TAZ localize to the invasive front in well-differentiated SCC, whereas nuclear YAP is homogeneously expressed in spindle cell carcinoma undergoing EMT We also show that mouse BCC and SCC are enriched for YAP gene signatures. Finally, we find that the conditional deletion of YAP and TAZ in mouse models of BCC and SCC prevents tumor formation. Thus, YAP and TAZ are key determinants of skin cancer initiation, suggesting that targeting the YAP and TAZ signaling pathway might be beneficial for the treatment of skin cancers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinoma Basocelular/genética , Carcinoma de Células Escamosas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfoproteínas/genética , Fatores de Transcrição/genética , Animais , Carcinoma Basocelular/patologia , Carcinoma de Células Escamosas/patologia , Proteínas de Ciclo Celular , Diferenciação Celular/genética , Linhagem Celular Tumoral , Núcleo Celular/genética , Proliferação de Células/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Knockout , Transdução de Sinais/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Transativadores , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP
3.
Nat Rev Cancer ; 18(9): 549-561, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29849070

RESUMO

Squamous cell carcinomas (SCCs) are among the most prevalent human cancers. SCC comprises a wide range of tumours originated from diverse anatomical locations that share common genetic mutations and expression of squamous differentiation markers. SCCs arise from squamous and non-squamous epithelial tissues. Here, we discuss the different studies in which the cell of origin of SCCs has been uncovered by expressing oncogenes and/or deleting tumour suppressor genes in the different cell lineages that compose these epithelia. We present evidence showing that the squamous differentiation phenotype of the tumour depends on the type of mutated oncogene and the cell of origin, which dictate the competence of the cells to initiate SCC formation, as well as on the aggressiveness and invasive properties of these tumours.


Assuntos
Carcinoma de Células Escamosas/patologia , Linhagem da Célula , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Pulmonares/patologia , Neoplasias Cutâneas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação , Oncogenes/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Células-Tronco
4.
Science ; 359(6380): 1177-1181, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29371425

RESUMO

Mouse heart development arises from Mesp1-expressing cardiovascular progenitors (CPs) that are specified during gastrulation. The molecular processes that control early regional and lineage segregation of CPs have been unclear. We performed single-cell RNA sequencing of wild-type and Mesp1-null CPs in mice. We showed that populations of Mesp1 CPs are molecularly distinct and span the continuum between epiblast and later mesodermal cells, including hematopoietic progenitors. Single-cell transcriptome analysis of Mesp1-deficient CPs showed that Mesp1 is required for the exit from the pluripotent state and the induction of the cardiovascular gene expression program. We identified distinct populations of Mesp1 CPs that correspond to progenitors committed to different cell lineages and regions of the heart, identifying the molecular features associated with early lineage restriction and regional segregation of the heart at the early stage of mouse gastrulation.


Assuntos
Coração/embriologia , Células-Tronco/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Divisão Celular , Linhagem da Célula/genética , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Mesoderma/citologia , Camundongos , Camundongos Mutantes , RNA/genética , Análise de Sequência de RNA , Células-Tronco/metabolismo
6.
Nature ; 536(7616): 298-303, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27459053

RESUMO

The changes in cell dynamics after oncogenic mutation that lead to the development of tumours are currently unknown. Here, using skin epidermis as a model, we assessed the effect of oncogenic hedgehog signalling in distinct cell populations and their capacity to induce basal cell carcinoma, the most frequent cancer in humans. We found that only stem cells, and not progenitors, initiated tumour formation upon oncogenic hedgehog signalling. This difference was due to the hierarchical organization of tumour growth in oncogene-targeted stem cells, characterized by an increase in symmetric self-renewing divisions and a higher p53-dependent resistance to apoptosis, leading to rapid clonal expansion and progression into invasive tumours. Our work reveals that the capacity of oncogene-targeted cells to induce tumour formation is dependent not only on their long-term survival and expansion, but also on the specific clonal dynamics of the cancer cell of origin.


Assuntos
Carcinoma Basocelular/patologia , Células Clonais/patologia , Células-Tronco Neoplásicas/patologia , Neoplasias Cutâneas/patologia , Animais , Apoptose , Carcinoma Basocelular/genética , Autorrenovação Celular , Sobrevivência Celular , Progressão da Doença , Epiderme/patologia , Feminino , Proteínas Hedgehog/metabolismo , Homeostase , Masculino , Camundongos , Mutação/genética , Oncogenes/genética , Transdução de Sinais , Neoplasias Cutâneas/genética , Cauda/patologia , Proteína Supressora de Tumor p53/metabolismo
7.
EMBO Mol Med ; 7(12): 1529-46, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26516212

RESUMO

The epigenomic landscape of Parkinson's disease (PD) remains unknown. We performed a genomewide DNA methylation and a transcriptome studies in induced pluripotent stem cell (iPSC)-derived dopaminergic neurons (DAn) generated by cell reprogramming of somatic skin cells from patients with monogenic LRRK2-associated PD (L2PD) or sporadic PD (sPD), and healthy subjects. We observed extensive DNA methylation changes in PD DAn, and of RNA expression, which were common in L2PD and sPD. No significant methylation differences were present in parental skin cells, undifferentiated iPSCs nor iPSC-derived neural cultures not-enriched-in-DAn. These findings suggest the presence of molecular defects in PD somatic cells which manifest only upon differentiation into the DAn cells targeted in PD. The methylation profile from PD DAn, but not from controls, resembled that of neural cultures not-enriched-in-DAn indicating a failure to fully acquire the epigenetic identity own to healthy DAn in PD. The PD-associated hypermethylation was prominent in gene regulatory regions such as enhancers and was related to the RNA and/or protein downregulation of a network of transcription factors relevant to PD (FOXA1, NR3C1, HNF4A, and FOSL2). Using a patient-specific iPSC-based DAn model, our study provides the first evidence that epigenetic deregulation is associated with monogenic and sporadic PD.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Doença de Parkinson/genética , Reprogramação Celular , Metilação de DNA , Epigenômica , Perfilação da Expressão Gênica , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
8.
Cell Stem Cell ; 17(1): 60-73, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26095047

RESUMO

Sox9 is a transcription factor expressed in most solid tumors. However, the molecular mechanisms underlying Sox9 function during tumorigenesis remain unclear. Here, using a genetic mouse model of basal cell carcinoma (BCC), the most frequent cancer in humans, we show that Sox9 is expressed from the earliest step of tumor formation in a Wnt/ß-catenin-dependent manner. Deletion of Sox9 together with the constitutive activation of Hedgehog signaling completely prevents BCC formation and leads to a progressive loss of oncogene-expressing cells. Transcriptional profiling of oncogene-expressing cells with Sox9 deletion, combined with in vivo ChIP sequencing, uncovers a cancer-specific gene network regulated by Sox9 that promotes stemness, extracellular matrix deposition, and cytoskeleton remodeling while repressing epidermal differentiation. Our study identifies the molecular mechanisms regulated by Sox9 that link tumor initiation and invasion.


Assuntos
Autorrenovação Celular/fisiologia , Transformação Celular Neoplásica/genética , Células-Tronco Neoplásicas/fisiologia , Oncogenes , Fatores de Transcrição SOX9/fisiologia , Citoesqueleto de Actina/fisiologia , Animais , Carcinogênese , Carcinoma Basocelular/etiologia , Carcinoma Basocelular/genética , Carcinoma Basocelular/fisiopatologia , Adesão Celular , Autorrenovação Celular/genética , Matriz Extracelular/fisiologia , Feminino , Deleção de Genes , Proteínas Hedgehog/fisiologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Modelos Biológicos , Mutação , Invasividade Neoplásica , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiologia , Fatores de Transcrição SOX9/genética , Transdução de Sinais , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/fisiopatologia , Receptor Smoothened
9.
CNS Neurol Disord Drug Targets ; 12(8): 1114-27, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24040813

RESUMO

A critical step in the development of effective therapeutics to treat Parkinson's disease (PD) is the identification of molecular pathogenic mechanisms underlying this chronically progressive neurodegenerative disease. However, while animal models have provided valuable information about the molecular basis of PD, the lack of faithful cellular and animal models that recapitulate human pathophysiology is delaying the development of new therapeutics. The reprogramming of somatic cells to induced pluripotent stem cells (iPSC) using delivery of defined combinations of transcription factors is a groundbreaking discovery that opens great opportunities for modeling human diseases, including PD, since iPSC can be generated from patients and differentiated into disease-relevant cell types, which would capture the patients' genetic complexity. Furthermore, human iPSC-derived neuronal models offer unprecedented access to early stages of the disease, allowing the investigation of the events that initiate the pathologic process in PD. Recently, human iPSC-derived neurons from patients with familial and sporadic PD have been generated and importantly they recapitulate some PD-related cell phenotypes, including abnormal α-synuclein accumulation in vitro, and alterations in the autophagy machinery. This review highlights the current PD iPSC-based models and discusses the potential future research directions of this field.


Assuntos
Células-Tronco Pluripotentes Induzidas/transplante , Células-Tronco Neurais/transplante , Doença de Parkinson/patologia , Doença de Parkinson/terapia , Transplante de Células-Tronco/métodos , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Neurais/imunologia , Células-Tronco Neurais/patologia , Doença de Parkinson/diagnóstico , Doença de Parkinson/imunologia , Células-Tronco Pluripotentes/imunologia , Células-Tronco Pluripotentes/patologia , Células-Tronco Pluripotentes/transplante
10.
EMBO Mol Med ; 4(5): 380-95, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22407749

RESUMO

Induced pluripotent stem cells (iPSC) offer an unprecedented opportunity to model human disease in relevant cell types, but it is unclear whether they could successfully model age-related diseases such as Parkinson's disease (PD). Here, we generated iPSC lines from seven patients with idiopathic PD (ID-PD), four patients with familial PD associated to the G2019S mutation in the Leucine-Rich Repeat Kinase 2 (LRRK2) gene (LRRK2-PD) and four age- and sex-matched healthy individuals (Ctrl). Over long-time culture, dopaminergic neurons (DAn) differentiated from either ID-PD- or LRRK2-PD-iPSC showed morphological alterations, including reduced numbers of neurites and neurite arborization, as well as accumulation of autophagic vacuoles, which were not evident in DAn differentiated from Ctrl-iPSC. Further induction of autophagy and/or inhibition of lysosomal proteolysis greatly exacerbated the DAn morphological alterations, indicating autophagic compromise in DAn from ID-PD- and LRRK2-PD-iPSC, which we demonstrate occurs at the level of autophagosome clearance. Our study provides an iPSC-based in vitro model that captures the patients' genetic complexity and allows investigation of the pathogenesis of both sporadic and familial PD cases in a disease-relevant cell type.


Assuntos
Dopamina/metabolismo , Neurônios/patologia , Neurônios/fisiologia , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Células-Tronco Pluripotentes/patologia , Células-Tronco Pluripotentes/fisiologia , Autofagia , Células Cultivadas , Humanos , Receptores Dopaminérgicos/metabolismo , Vacúolos/metabolismo , Vacúolos/ultraestrutura
11.
Cell Cycle ; 9(17): 3414-22, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20729629

RESUMO

We have recently found that Rem2 GTPase, highly expressed in human embryonic stem cells (hESC), maintains the cell cycle and controls proper differentiation towards ectoderm, suggesting a role in neuronal development. We describe here the use of the zebrafish (Danio rerio) model to determine the physiological significance of Rem2 during embryogenesis. We show that Rem2 RNA is highly expressed in zebrafish embryos up to 2 hours of development followed by a decrease in expression until 48 hours when afterwards Rem2 is switched on again until 5 days. In situ expression analysis reveals that Rem2 is expressed exclusively in the tectum of the brain and eye of the zebrafish. Rem2 morpholino demonstrates impaired embryo development resulting in loss of neural tissue. We show that the mechanism of action of Rem2 is to control apoptosis and proliferation, peaking at 36 hours of development. Rem2 is down-regulated under general differentiation conditions of hESC and is lower expressed in most differentiated cells; however, it is upregulated with neuronal development. This suggests that Rem2 is critical for neuronal development during embryogenesis by regulating proliferation and apoptosis. We propose a model in which Rem2 GTPase is a key regulator maintaining pluripotency during early stages of embryogenesis and survival of neurons during later embryonic development.


Assuntos
Apoptose , Desenvolvimento Embrionário , GTP Fosfo-Hidrolases/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Neurônios/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Diferenciação Celular , Proliferação de Células , Biologia Computacional , Embrião não Mamífero/metabolismo , Células-Tronco Embrionárias/metabolismo , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , Humanos , Modelos Biológicos , Proteínas Monoméricas de Ligação ao GTP/classificação , Proteínas Monoméricas de Ligação ao GTP/genética , Neurônios/citologia , Fatores de Tempo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/classificação , Proteínas de Peixe-Zebra/genética
12.
Nat Protoc ; 5(4): 647-60, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20224565

RESUMO

The generation of patient-specific induced pluripotent stem cells (iPSCs) offers unprecedented opportunities for modeling and treating human disease. In combination with gene therapy, the iPSC technology can be used to generate disease-free progenitor cells of potential interest for autologous cell therapy. We explain a protocol for the reproducible generation of genetically corrected iPSCs starting from the skin biopsies of Fanconi anemia patients using retroviral transduction with OCT4, SOX2 and KLF4. Before reprogramming, the fibroblasts and/or keratinocytes of the patients are genetically corrected with lentiviruses expressing FANCA. The same approach may be used for other diseases susceptible to gene therapy correction. Genetically corrected, characterized lines of patient-specific iPSCs can be obtained in 4-5 months.


Assuntos
Técnicas de Transferência de Genes , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Técnicas de Cultura de Células , Desdiferenciação Celular , Células Cultivadas , Anemia de Fanconi/genética , Anemia de Fanconi/terapia , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Terapia Genética/métodos , Humanos , Fator 4 Semelhante a Kruppel , Lentivirus/genética , Células-Tronco Pluripotentes/transplante , Transdução Genética , Transplante Autólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...